Written in NZ for $\mathbf{N Z}$
Help Me of HOME Series

Curriculum Strand

 Worksheets
A Teacher's resource supplied as PHOTOCOPY MASTERS

Book 5b

40 Curriculum Strand Worksheets

which covers Level 3 of the achievement objectives as outlined in the Mathematics in the New Zealand Curriculum for the strands ... Number \& Algebra, Measurement \& Geometry and Statistics.

This resource is to be used in conjunction with Book 5a and supports the Numeracy Professional Development Project Stages 6 \& 7

Author: A. W. Stark

(formerly AWS Teacher Resources)
PO Box 21304 Edgeware CHRISTCHURCH 8143 NEW ZEALAND 응 (03) 3380516 or 国 (03) 3380514 e-mail: aws.resources@xtra.co.nz Website: www.awsresources.co.nz

This resource unit has been supplied on the understanding that copies of any part of this publication will not be given or sold to teachers or students from other schools or institutions.

This resource unit may be used as a master, and therefore can be photocopied, only by the school or institution that has purchased this resource unit.

Note from the author:

About this resource ...

Help Me at Home Curriculum Strand Worksheets
 - Book 5b (Code: AH5b)

is one of a series of TWO sets of 8 resources and has been written to cover the achievement objectives as outlined in the Mathematics in the New Zealand Curriculum (2007 revised edition) document for the teaching areas or strands of ... Number \& Algebra, Measurement \& Geometry and Statistics.

Resource Book 5b is to be used in conjunction with a second resource, Book 5 a.

Help Me at Home Number Knowledge Worksheets - Book 5a (Code: AH5a)

Book 5a has been written to support the Numeracy Professional Development Project currently being implemented within many New Zealand schools.

Background Information:

The Numeracy Professional Development Project being implemented in many schools involves a knowledge section and a strategy section.
The knowledge section introduces and revises the key number knowledge facts required.
The strategy section describes the mental processes students employ to estimate answers and solve problems involving the four operations of addition, subtraction, multiplication and division.
The strategy stages are listed in this table.
The aim of this project is to equip students with various strategies that allow them to be successful at Mathematics.

In order for this to occur, it is essential for students to be confident with number knowledge.

\%/8	Strategy Stages
0	Emergent
1	One-to-one Counting
2	Counting from One on Materials
3	Counting from One by Imaging
4	Advanced Counting (Counting On)
5	Early Additive Part-Whole
6	Advanced Additive Part-Whole
7	Advanced Multiplicative Part-Whole
8	Advanced Proportional Part-Whole

Without the 'knowledge', that is, knowing the basic numeracy facts, it is difficult for a student to progress through the strategy stages. Students move through the strategy stages at different rates and may be working at different stages given a certain problem. This is often a result of gaps in key knowledge, hence it CANNOT be stressed enough the importance of learning the numeracy facts. How children learn the numeracy facts is not as important as knowing them. These resources are designed to systematically introduce and revise the key numeracy facts.

How to use these resources:
There are $\mathbf{2}$ sets of 8 resources in this series.
The table opposite shows the suggested Year Group each book can be used at, but this is only a suggestion.
Example: 1-2-3 means it is likely to be used at Year 2, the bold underlined number.

Book

$\left.$| $\frac{\text { Suggested }}{\text { Year Group }}$ |
| :---: | :---: | :---: |
| (underlined) | | Strategy |
| :---: |
| Stages |
| covered |\quad| Curriculum |
| :---: |
| Level | \right\rvert\,

Why so many resources?

A note for Teachers

There are 2 sets of 8 resources in this series to allow you to have a different book available each year for classes which are made up of mixed year groups. This will stop the problem of a student saying "We used this book last year!". Which book you use for your class is up to your professional judgement, taking into account which resource classes above or below your class might use.

How to use these TWO resources - Book 5a \& Book 5b

Book AH5a
 40x Number K nowledge

 Worksheets- This resource systematically introduces and revises the number knowledge, presented in various formats.
- Designed to reinforce the Numeracy Professional Development Project, it is intended that one worksheet per week is completed in order from worksheet 1 to worksheet 40.
- One worksheet per week is to be done in conjunction with one worksheet selected from the Curriculum Strand Worksheet resource (Book 5b).
- Book 5a covers the Strategy Stages 6 \& 7 .

Book AH5b

40x Curriculum Strand

 Worksheets- The $\mathbf{4 0}$ worksheets in this resource cover the Achievement Objectives as outlined in Mathematics in the New Zealand Curriculum for Number \& Algebra, Measurement \& Geometry and Statistics.
- These worksheets can be completed in any order.
- One worksheet is selected per week to be done in conjunction with one worksheet from the Number Knowledge Worksheet resource (Book 5a).
- The worksheet selected per week relates to the topic being covered at school or as revision.
- Book 5b covers Level 3 of the Curriculum.

Note to Teachers:

- The aim of these TWO resources (AH5a \& AH5b) are to provide the classroom teacher with a systematic and comprehensive series of worksheets, which form the basis of your mathematics homework.
Worksheets from Book 5a:
Photocopy weekly and sequentially in order, a Number Knowledge worksheet from Book 5a. On the Number Knowledge worksheet, pupils can record their Name, Term, Week and the Curriculum Strand Worksheet that is also to be done that week.

Worksheets from Book 5b:

- Select and photocopy the appropriate Curriculum Strand Worksheet required, as determined by what you are currently teaching in class or a topic you are revising. In the table on the next page, record the curriculum worksheet being used each week.

Extension Activity for Parents:

- Each Curriculum Strand Worksheet has an AT HOME activity as an extension activity for parents or caregivers.
- Success in mathematics is greatly enhanced by having a good understanding of Number Knowledge. That is, from being able to add, subtract, multiply and divide with confidence, with success comes enjoyment.
- Either staple the two worksheets together or create a double sided homework sheet.

Book 5a (AH5a) - Number Knowledge Worksheets

Number K nowledge Worksheet	$\underset{\text { Enter }}{\text { Term }}$	\& Week etails below	Curriculum Strand Worksheet Enter the worksheet number ssued each week	Number Knowledge Worksheet	Term \& Week Enter details below	Curriculum Strand Worksheet Enter the worksheet number ssued each week
1	Term:	Week:		21	Term: Week:	
2	Term:	Week:		2	Term: Week:	
3	Term:	Week:		23	Term: Week:	
4	Term:	Week:		24	Term: Week:	
5	Term:	Week:		25	Term: Week:	
6	Term:	Week:		26	Term: Week:	
7	Term:	Week:		27	Term: Week	
8	Term:	Week:		28	Term: Week:	
9	Term:	Week:		29	Term: Week:	
10	Term:	Week:		30	Term: Week:	
11	Term:	Wee		31	Term: Week:	
12	Term:	Week:		32	Term: Week:	
13	Term:	Week:		33	Term: Week:	
14	Term	Week:			Term: Week:	
15	Term:	Week:		35	Term: Week:	
16	Term:	Week:		36	Term: Week:	
17	Term	Week:		37	Term: Week:	
18	Term:	Week:		38	Term: Week:	
19	Term:	Week:		39	Term: Week:	
20	Term:	Week:		40	Term: Week:	

Book 5b (AH5b) - Curriculum Strand Worksheets
(Tick next to worksheet as each ONE worksheet is issued per week)
\(\left.$$
\begin{array}{|c|c|c|c|c|c|}\hline 1 & \begin{array}{c}\text { Reading and writing whole } \\
\text { numbers }\end{array} & \text { Tick } & 21 & \begin{array}{c}\text { Reading scales / measuring \& } \\
\text { drawing lines }\end{array}
$$ \& Tick

\hline 2 \& \begin{array}{c}Place value revision

Reading and writing decimal

numbers\end{array} \& 22 \& Perimeter\end{array}\right]\)| Area |
| :---: |

Curriculum Strand Worksheets Section

(Level 3)

Number \& Algebra,
 a,

Measurement \& Geometry,

and Statistics

Worksheets

Select ONE Curriculum Strand Worksheet per week from this book (AH5b) to be completed in conjunction with ONE Number Knowledge Worksheet, selected from Book 5a (AH5a).

Record your selection in the table at the front of this resource.

[^0]
(1) Use the clues across and down to complete this number cross involving decimals.

Across

1 three hundred and eighteen point foup six
2 fifty-nine point two four six
6 one hundred and eight point four eight
7 six point three two four
8 fifteen point six nine
10 three hundred and forty-nine point three point seven two
14 five four zero nine
15 six hundred and seventeen point two zero five

Down

1 three point five seven one
3 two point one eight three seven
4 six hundred and forty-eight point four one

5 six hundred and eighteen point seven six

Down

9 five point three seven nine
11 nine hundred and four point two seven
12 two point six three four
13 one point three six eight
Write these decimals
as number words.

(3)
5.02

(4)
89.6

(5)
43.87

(6)
350.13

(b)

(7) 18.019

(8) 58.513
\qquad
\qquad The aim of this activity sheet is to read and write decimals
as numerals and number words.

Suggested HOME activity:

Say aloud or write any multi-digit decimal, as on this worksheet, in number words and ask your child to write it as a numeral. Concentrate on pairs where the digits have been reversed. Example: 1.89, 98.1 214.7, 741.2 ... etc.

Write any multi-digit decimal as numerals and ask your child to say, then write the decimal as number words.

Sign when
completed:

As we have seen, the 'digits' in a whole number all have a place value.
Numbers involving decimals also have particular place values.

Example: What is the value of the digit '9' in each of these numbers? 20.95 and 7.196

Answer: The digit ' 9 ' in 20.95 stands for 9 tenths (0.9). The digit ' 9 ' in 7.196 stands for 9 hundredths (0.09).

Some of the place values for numbers involving decimals are shown in this chart below.

100 hundreds	10 tens	1 ones (units)	$\frac{1}{10}$ tenths	$\frac{1}{100}$ hundredths	$\frac{1}{1000}$ thousandths

Count the number of rings on each peg.
What decimal number is shown on each abacus?
(1)

(3)

(4) Colour in rings on this abacus to show the number 15.603

The place a digit has in a number will affect its value.
Example: In 950, the 5 has a place value of 10 and means 50

What is the place value of the BOLD digit in each number and what does it mean?

(9)
52.735
42.386
(11)
39.782
(12)
(13)
(14)
4.8912
(15) 9.2433

To show you understand place value, circle the following digits ...

> (16)

(17)

(18) ... circle the $1 / 10^{\prime}$'s digit in 987.68
(20)
... circle the $1 / 1000^{\prime}$'s digit in
0.8261
... circle the $1 / 100$'s digit in 123.856
The aim of this activity sheet is to understand place value
for decimals. i.e. tens, units, tenths, hundredths and
thousandths.

Suggested HOME activity:

Find five different coloured blocks or objects to represent the various place values. Ask your child to model each decimal using the blocks. Example: For $1.93 \ldots$... 1 's 100's block, $9^{1} / 10^{\prime}$'s blocks and $3^{1 / 100}$'s blocks.
Ask your child how many of each place value is in the decimal.
Sign when
completed:

There is more than one way to work out an answer. Here are some examples.
Groupings of 10,100 or 1000
Adding $\underline{6} 2+9+\underline{40}$ is the same as $\underline{100}+11=111$

(1)	$74+7+30=$	+	$=$
(2)	$80+35+25=$	+	$=$
(3)	$520+29+500=$	+	$=$
(4)	$1310+1190+26=$		$=$

Using known doubles

Adding $75+76$ is the same as $\underline{70}+\underline{70}+11=151$ or $\quad \underline{80}+\underline{80}-9=151$
(5) $62+63=60+60+$ \qquad $=$

(6) $71+74=$ \qquad +70 + \qquad

(7) $102+107=100+$ \qquad $+$ $\square=$ $=$
(8) $224+219=$ \qquad $+$
 $=$ \qquad
Round to make '10' or a 'multiple of 10 '
Add $68+9$ (add 2 to 68 , subtract 2 from 9)
Answer: $68+9=70+7=77$

Adding or subtracting 100's, 10's and 1's
Example: Add $123+245$

$$
\begin{array}{ccc}
(100 ' s) 100+200 & (10 ' s) 20+40 & (1 ' s) 3+5 \\
\text { Answer: } 300+60+8=368
\end{array}
$$

(13) $362+137$ is the same as ... $300+$ \qquad +60 + $+2+$
(14) $145+524$ is the same as ...
(15) 267-124 is the same as. 200- \qquad $+$ \qquad - 20 + \qquad - $4=$ \qquad
(16) $539-216$ is the same as ..

$$
=
$$

Splitting numbers to make '10'

Work out 123-8 $=0 \quad(123=120+\underline{3})$ $120-8=112$. Answer: $112+\underline{3}=115$
(17) 175-6 is the same as 170-6+ \qquad
(18) $326-9$ is the same as
 $-9+$ \qquad $=$ \qquad
(19) 432-8 is the same as..

430

\qquad $+$ \qquad $=$

531-7 is the same as ..

Don' \dagger subtract ... add

$95-66=0$ is the same as $66+05$
Use 'tidy' numbers to work this out.

61	62	63	64	65	66	67	68	69	70
71	72	73	74	$7+10$	77	78	79	70	
81	82	83	84	$2+10$	5	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Answer: $4+20+5=29(66+4+20+5=95)$
(21) $74-39=0$ is the same as $39+\bullet=74$ O $=1+30+$ \qquad $=$ \qquad
(22) $95-68=0$ is the same as $68+0=95$ $0=2+$ \qquad $+$ \qquad $=$ \qquad (23) $\quad 92-47=0$ is the same as $47+\bullet=92$ - \qquad $+$ \qquad $+$ \qquad $=$ \qquad
(24) $117-99=0$ is the same as $99+\bullet=117$ $=$ \qquad $+$ \qquad $+$ \qquad $=$ \qquad $138-67=\bullet$ is the same as $67+\bullet=138$ - \qquad $+$ \qquad $+$ \qquad $=$ \qquad
The aim of this activity sheet is to look at different strategies that could be used to work out addition or subtraction problems.

Suggested HOME activity:

Make up similar questions that cover the basic numeracy facts at the back of this resource. These are key number knowledge facts.
The strategies used on this worksheet are only a suggestion. Your child may not need to use some or all of these strategies and may have strategies of their own. Encourage them to talk about how they work out their answers. Remember that working out the answer with confidence is more important than the strategy used.

Sign when
completed:

AWS

Don' \dagger subtract ... add

$94-\bullet=67$ is the same as $67+\bullet=94$
Use 'tidy' numbers to work this out.

61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	$\underline{97}$	98	99	100

Add a 'large' tidy number, then count back Answer: $30-3=27(67+30=97-3=94)$
(1) $134-79=\bullet$ is the same as $79+\bullet=134$ - $=60$ - \qquad $=$ \qquad
(2) $275-86=$ is the same as $86+\bullet=275$

\qquad - \qquad $=$ \qquad
(3) $521-57=0$ is the same as $57+0=521$ - $=$ \qquad - \qquad =

(4) $347-89=0$ is the same as $89+0=347$
\qquad - \qquad
Reversing order
$\bullet+24=41$ can be written as $24+\bullet=41$, then work out using any strategy

Equal additions to make 'tidy' numbers Subtract 157-98 (add 2 to both numbers)

$$
\text { Answer: } 157-98=159-100=59
$$

(10) $63-28=65-$
(11) $\quad 182-65=$
(12) $\quad 276-37=$
(13) $354-96=$
(14) $421-89=$

Both sides are equal

Find the missing number ... $45+32=0+30$ (add 2 to 45 because 30 is 2 less than 32)
Answer: $45+32=47+30$
Find the missing number - $-37=78-40$ (subtract 3 from 78 because 37 is 3 less than 40) Answer: $75-37=78-40$

Find the missing numbers.
$19+\ldots=20+78$
$89+25=80+$
\qquad

Work out the problems using any strategy you like.

?
The aim of this activity sheet is to look at different strategies that could be used to work out addition or subtraction problems.

Suggested HOME activity:

Make up similar questions that cover the basic numeracy facts at the back of this resource. These are key number knowledge facts.
The strategies used on this worksheet are only a suggestion. Your child may not need to use some or all of these strategies and may have strategies of their own. Encourage them to talk about how they work out their answers. Remember that working out the answer with confidence is more important than the strategy used.

Sign when
completed:
(1) Write these decimals in order from smallest to largest.
\qquad , \qquad ,
\qquad , \qquad ,
\qquad

Mark competed in the javelin throw. His throwing distances are in the table.

Throw	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Distance	23.65 m	23.37 m	23.48 m	23.71 m	23.52 m

(2) What was the distance of his longest throw?
(3) What was the distance of his shortest throw?
(4) What was the length of the 2nd longest throw?
(5) Write the throwing distances in order from longest throw to shortest throw.

This table shows the results of a 200 m race, run in 8 lanes.
The time is in seconds and there were eight runners.

Lane	Time
1	33.4
2	37.7
3	36.3
4	31.9
5	34.4
6	30.1
7	35.8
8	32.9

(6) In which lane was the fastest runner?
(7) In which lane was the 7th fastest runner?
(8) What were the times for 1st, 2nd and 3rd?
(9) Write the 200 m race times in order from fastest time to slowest time.
15.0000,

Suggested HOME activity:

Create up to six decimals and ask your child to order the totals from smallest to largest total.
Example: weight of a tomato, $3.6 \mathrm{~g}, 4.5 \mathrm{~g}, 6.1 \mathrm{~g}, 5.8 \mathrm{~g} 3.9 \mathrm{~g}, 4.7 \mathrm{~g}$ etc.
Make up similar word problems as above that involve different weight, distance or volume values and ask your child to order each group.

Sign when completed:

Rounding a money total to the nearest $\$ 10$ can make adding up money less difficult.
Example: $\$ 87$ is almost $\$ 90, \$ 82$ is just over $\$ 80$
Round UP if the end number is $5,6,7,8$ or 9 .
Round DOWN if the number is $0,1,2,3$ or 4 .
Round each money amount to the nearest $\$ 10$.

(1)	\$58	(6)	\$644
(2)	\$82	(7)	\$786
(3)	\$97	(8)	\$267
(4)	\$74	(9)	\$573
(5)	\$146	(10)	\$916

When rounding a number to the nearest 100 , look at the 10's place value number.
Example: $7 \underline{6} 7$ rounds up to $800(5,6,7,8,9 \uparrow)$ but $4 \underline{3} 7$ rounds down to $400(0,1,2,3,4 \downarrow)$

Round these numbers to the nearest 100.

When rounding a decimal to 1 decimal place ($1 \mathrm{~d} . \mathrm{p}$.), look at the $1 / 100$'s place value digit.
Example: $\quad 4.5 \underline{6}$ rounds up to $4.6 \quad(5,6,7,8,9 \uparrow)$ but $2.4 \underline{3}$ rounds down to $2.4(1,2,3,4 \omega)$

Round these decimals to 1 decimal place.

(21)	3.49	(26)	17.29
(22)	7.62	(27)	28.84
(23)	1.94	(28)	124.77
(24)	3.77	(29)	133.65
(25)	1.64	(30)	813.21

Round these money amounts to the nearest \$10, $\$ 100$ or 10 cents, then work out an answer.
Add $\$ 29+\$ 32 \ldots$ Rounded $\$ 30+\$ 30=\$ 60$
Add $\$ 117+\$ 769$... Rounded $\$ 100+\$ 800=\$ 900$ Add $\$ 1.28+\$ 4.53$... Rounded $\$ 1.30+\$ 4.50=\$ 5.80$ The answer you get is called an estimate because it is not the exact answer.

Round each money amount to the nearest $\$ 10$, then work out an estimated answer.
(31)
(32)
$\$ 81+\$ 79=$ \qquad $+$ \qquad
$=$ \qquad
$\$ 157+\$ 52=$ \qquad $+$ \qquad
\qquad
(33)

\qquad $-\square=$ \qquad
(34) $\$ 234-\$ 74=$ \qquad $=$ \qquad

Round each money amount to the nearest $\$ 100$, then work out an estimated answer.
(35)
$\$ 275+\$ 739=$ \qquad $+$ \qquad $=$ \qquad
(36)
$\$ 645+\$ 389=$ \qquad $+$ \qquad $=$ \qquad
(37)
\$1062-\$529 = \qquad - \qquad $=$ \qquad
(38)
\$2431- $\$ 959=$ \qquad - \qquad $=$ \qquad
Round each money amount to the nearest 10 cents (1 d.p.), then work out an estimated answer.
(39)

$$
\$ 7.68+\$ 8.27=
$$

\qquad $+$ \qquad $=$ \qquad
(40) $\$ 9.54+\$ 3.86=$ \qquad $+$ \qquad $=$ \qquad
(41) $\$ 16.83-\$ 9.49=$ \qquad - \qquad
\qquad
(42) $\$ 19.95-\$ 8.43=$ \qquad - \qquad $=$ \qquad

This number line shows skip counting in 7's.

"What's $7+7+7+7+7 \quad$..... is that the same as 7×5 ?" asked Jack.

(1) Write the missing multiples of 7 as you skip count in 7's up to 70.

7 \qquad
\qquad 28 \qquad ,
_ . 49, \qquad 63 \qquad

Work out these skip counting questions and write them as multiplication facts.
(2) $7+7+7+7=$ \qquad and is the same as $7 x$ \qquad $=$

$$
7+7+7+7+7+7+7 \equiv \longrightarrow \text { and }
$$ is the same as 7 \qquad $=$ \qquad -

\qquad and is the same \qquad $=$ $=-$
(5) $7+7=$ \qquad and is the same as $7 x$ \qquad $=\square$ $=\square$ and is the same as $7 x$ \qquad $=$ \qquad
(7) $7+7+7=$ \qquad and is the
same as $7 x$ \qquad $=$ \qquad
(8) $7+7+7+7+7+7+7+7+7=$ and is the same as $7 x$ \qquad $=$ \square and is
(9) $7+7+7+7+7+7=$ \qquad
the same as $7 x$ \qquad $=$ \qquad
\qquad and is the same as $7 x$ \qquad $=$ \qquad

Write in the missing numbers for the $7 \times$ multiplication facts.

(16) $7 \times 5=$
\qquad
(17) $2 \times 7=$
\qquad
(18) $7 \times 7=$
\qquad
(19) $3 \times 7=$
(20) $7 \times 8=$

"What number multiplied by 7 gives me an answer of 28?" asked Mark.
Written as $7 \times \quad=28 \ldots$ the answer is 4.
Write in the missing numbers for these $7 \times$ multiplication facts.
(21)

(26) $7 \times$ \qquad $=28$
(22)
$x 7=14$
(27)
(23) \qquad \times $=56$ \qquad $\times 7$
$=7$
(24)
$7 \times$ \qquad $=49$
(29) \qquad $\times 7$ $=35$
(25) \qquad $\times 7=42$
(30) $7 \times$ \qquad $=63$
(31) If one book costs $\$ 8.00$, how much would 7 books cost?

\qquad x \qquad $=$ \qquad
(32) If one ice-cream costs $\$ 4.00$, how much would 7 ice-creams cost?
\qquad x \qquad $=$ \qquad

(33) If you sent $\$ 56.00$ buy 7 C.D.'s, how much did each C.D. cost?
\qquad \div \qquad $=$ \qquad

The aim of this activity sheet is to use skip counting in 7's to introduce the $7 x$ multiplication facts. Multiplication is 'short-hand' for repeated addition of the same number.

Suggested HOME activity:

Revise skip counting in 7's until your child can successfully and quickly count in 7's up to at least 70. These are called the multiples of 7. Ask your child each multiplication fact until they know them all.
Example: What is 7 multiplied by 5 ? 7, $14,21,28, \underline{35}$.
At this stage, your child may still skip count to get the answer.
Sign when
completed:

10 Multiples of 8 's / multiplication facts

Name:
AWS

This number line shows skip counting in 8 's.

$\stackrel{\mid}{\mathbf{1}} \mathbf{~}$

"What's $8+8+8+8+8 \ldots .$. is that the same as 8×5 ?" asked David.
(1) Write the missing multiples of 8 as you skip count in 8's up to 80.

8, \qquad 32 \qquad ,
\qquad 56, \qquad 72, \qquad
Work out these skip counting questions and write them as multiplication facts.
(2) $8+8+8+8=$ \qquad and is the
same as $8 \times$ \qquad $=$

$$
\begin{equation*}
8+8+8+8+8+8+8= \tag{3}
\end{equation*}
$$ and is the same as 8 \qquad $=$ \qquad and

(4)
$8+8+8+8+8=$ \qquad
is the same as $8 x$ $=$ $-\square$
$8+8=$ \qquad and is the same as $8 x$ \qquad $=$
 and is the same as $8 x$ \qquad $=$ \qquad
(7) $8+8+8=$ \qquad and is the
same as $8 \times$ \qquad $=$ \qquad
(8) $8+8+8+8+8+8+8+8+8=$ and is the same as $8 \times$ \qquad $=$ \qquad
(9) $8+8+8+8+8+8=$ \qquad and is
the same as $8 x$ \qquad $=$ \qquad
(10) $8+8+8+8+8+8+8+8+8+8=$ \qquad and is the same as $8 \times$ \qquad $=$

Write in the missing numbers for the $8 \times$ multiplication facts.

(11) $1 \times 8=\square$
(12) $8 \times 4=$
(13) $6 \times 8=\square$
(14) $8 \times 9=$
(15) $10 \times 8=$
(16) $8 \times 5=$
\qquad
(17) $2 \times 8=$ \qquad
(18) $8 \times 7=$
\qquad
(19) $3 \times 8=$
(20) $8 \times 8=$
"What number multiplied by 8 gives me an answer of 40?" asked Rangi.
Written as $8 \times \quad 40 \ldots$ the answer is 5 .
Write in the missing numbers for these $8 \times$ multiplication facts.

(31) If one book costs $\$ 9.00$, how much would 8 books cost?

\qquad x \qquad $=$ \qquad
(32) If one ice-cream costs $\$ 5.00$, how much would 8 ice-creams cost?
\times \qquad $=$ \qquad

(33) If you spent $\$ 64.00$ buy 8 C.D.'s, how much did each C.D. cost?

The aim of this activity sheet is to use skip counting in 8's to introduce the $8 x$ multiplication facts. Multiplication is 'short-hand' for repeated addition of the same number.

Suggested HOME activity:

Revise skip counting in 8's until your child can successfully and quickly count in 8's up to at least 80. These are called the multiples of 8. Ask your child each multiplication fact until they know them all.
Example: What is 8 multiplied by $5 ? \ldots . .8,16,24,32,40$.
At this stage, your child may still skip count to get the answer.
Sign when
completed:

11 Division by 'grouping' - 7 \& 8

This 28 piece chocolate block is to be shared amongst Jane's friends.
"We will all get 7 pieces each," said Jane.

How many friends is Jane sharing her chocolate with?

Answer: 4 friends, written as $28 \div 7=4$
How many groups of 7 can you get from each group of shapes?
Write each question as a division fact.
 (8) 838 8

- $\mathbb{A} \mathbb{A} \mathbb{\Delta} \mathbb{\Delta}$ $\mathbb{A} \mathbb{A} \mathbb{A}_{\mathbb{A}} \mathbb{A}^{2}$
 © $\mathbb{A}_{\Delta}^{\Delta} \Delta \mathbb{\Delta}$ - $)^{2}$ \& - $\mathbb{A} \mathbb{A} \mathbb{A}$ \&

$\div 7=$

(8)
 2 88888888

(9)
 288 8888

(10)

12 Multiplication strategies

When working with large numbers, there is more than one way to work out an answer.
Here are some strategies.
Splitting numbers using place value Working out 49×7 is the same as $(40 \times 7)+(9 \times 7)=280+63=343$

(1) \qquad
$=$ \qquad $+$ \qquad $=$ \qquad
(2)
$67 \times 6=(\ldots x$ \qquad $)+($ \qquad $x \quad 1)$
$=$ \qquad $+$ \qquad $=$ \qquad
(3) $54 \times 7=(\ldots x$ x _ $)$ $)+($ $\times \square)$ $=$ \qquad $+$ \qquad $=$
4) $98 \times 3=(100 x$ \qquad) $-(2 x$

$=$ \qquad $\longrightarrow=$

(5)

$$
\begin{aligned}
86 \times 4 & =(\ldots \times+ \\
& =
\end{aligned}
$$ $x \longrightarrow$) $=$ $+$

Rounding to use 'tidy' numbers

Working out 298×5 is the same as $(300 \times 5)-(2 \times 5)=1500-10=1490$

(6)
$397 \times 4=(400 x$ \qquad $)-(3 x \longrightarrow)$

(7)
$=$ \qquad

\qquad
(8) $594 \times 7=$

\qquad $x \quad)$
The aim of this activity sheet is to look at different strategies that could be used to work out multiplication - problems.

Suggested HOME activity:

Make up similar questions that cover the basic numeracy facts at the back of this resource. These are key number knowledge facts.
The strategies used on this worksheet are only a suggestion. Your child may not need to use some or all of these strategies and may have strategies of their own. Encourage them to talk about how they work out their answers. Remember that working out the answer with confidence is more important than the strategy used.
(10) $706 \times 6=(\ldots x$ \qquad $)+(\quad x$ \qquad

$$
=
$$

\qquad $+$ \qquad $=$ \qquad
Sign when
completed:

13 Division strategies

Name:
AWS

When working with large numbers, there is more than one way to work out an answer.
Here are some strategies.
Using known multiples of 10
Working out $95 \div 5$ is the same as $(50 \div 5)+(45 \div 5)=10+9=19$

(1)

$$
\begin{aligned}
64 \div 4 & =(40 \div \ldots)+(24 \div \ldots) \\
& =\ldots
\end{aligned}
$$

(2) $125 \div 5=(100 \div$ \qquad $)+($ \qquad $\div \longrightarrow$
$=$ \qquad $+$ \qquad $=$ \qquad
(3)

$$
102 \div 6=(
$$ $\div \quad$) $)+($ $\square \square$

(4)

$$
112 \div 7=(
$$ \div \qquad $)+(\square \div)$

\qquad $+$ $+\ldots=$ $=$
(5)
 \div \qquad $\div \longrightarrow$ $=$ \qquad $+$ $=$

Rounding up or down to use 'tidy' numbers
Working out $85 \div 5$ is the same as ..

$$
(100 \div 5)-(15 \div 5)=20-3=17
$$

(6)

(7)

$$
\begin{aligned}
588 \div 6 & =(\\
& =
\end{aligned}
$$

\qquad
(8)
 $-$ $\square-$ $=$ $\square \square$
(9)

$$
\begin{aligned}
832 \div 4 & =(800 \div \ldots)+(\ldots \div \\
& =
\end{aligned}
$$

(10) \qquad \div \qquad) + (\qquad \div \qquad
$=$ \qquad $+$ \qquad $=$ \qquad

Sign when
completed:

14

An object cut into TWO equal sized pieces is said to be cut in half.
One half written as a fraction is $\frac{1}{2}$.
For any fraction, the bottom number, tells you how many times the 'whole' object has been cut or divided up.
Example: $1 / 2,1 / 3,1 / 4,1 / 5,1 / 6,1 / 10$ etc.

Write the missing fractions, words and numbers in this table. Choose from this box.

one sixth, one tenth, one half, one quarter $\frac{1}{5}$		
Fraction	Written as ...	Means
(1)	$\frac{1}{2}$	(2) ___ out of
one third	(3)	(4) __out of
(5)	(6)	1 out of 4
one fifth	(7)	(8) out of
(9)	(10)	1 out of
(11)	$\frac{1}{10}$	- out
	Beside each strip, write what fraction has been shaded in.	
	1	
	\square	\square
	1	
	\cdots	- $=$
		=
	I	\square

(14) Show you understand fractions by shading

... of each strip.
"What's one fifth of \$45?" asked Andy. (Written as $\frac{1}{5}$ of 45 or $\frac{1}{5} \times 45$)
"Try what number multiplied by 5 is 45 or dividing 45 by 5 ," said Tom.
(Written as $5 \times \boldsymbol{\bullet}=45$ or $45 \div 5=\boldsymbol{\bullet}$.)
Answer: $\frac{1}{5} \times 45=9$, as $5 \times 9=45$ or $45 \div 5=9$)
Work out each fraction of these numbers.

(20) Find $\frac{1}{10}$ of $160=$ \qquad (as $160 \div 10=$ _ $)$

Finding a 'whole'

Ben was given 8 chocolate squares which was $\frac{1}{5}$ of a block of chocolate. How
 many squares in this block of chocolate?
\qquad
x \qquad $=$ \qquad
If Helen spent $\$ 10$ which was $\frac{1}{6}$ of her pocket money, how much pocket money did she get?
\qquad X \qquad $=$ \qquad
(23) A café has sold 9 bread rolls which was $\frac{1}{7}$ of the bread rolls
 available for sale that day. How many bread rolls did the café have for sale?
\qquad x \qquad $=$ \qquad

coThe aim of this activity sheet is to understand how to work out a fraction of a group of shapes or a number. Working with fractions will either involve dividing or multiplying.

Suggested HOME activity:

Find a collection of objects from around the house or use money totals and ask your child to find a fraction of each group / money total, using the fractions on this worksheet. Extend the exercise to include working out what a total group would be, given a fraction of it.
Example: If $\frac{1}{3}$ of a group is 4 , how big is the group. Answer: 12

Sign when

completed:

15 More fractions

For any fraction, the bottom number, tells you how many times the 'whole' object has been cut or divided up.
Example: $1 / 2,1 / 3,1 / 4,1 / 5,1 / 6,1 / 10$ etc.

If 1 is the top number, the bigger the number on the bottom, the smaller the fraction.
(1) Write the fractions in the box in order from smallest to largest.
\qquad

$1 / 9,1 / 3$
$1 / 6,1 / 8$
$1 / 10$
$1 / 1 / 4$
$1 / 7$
$1 / 5$

(2) Mark each fraction (A to E) on this number line, where $X=1 / 2$.

$$
A=1 / 5, B=1 / 9, C=1 / 7, D=1 / 6, \quad E=1 / 10
$$

Just like whole numbers, a number sequence can be created by skip counting in fractions.
Example: $1 / 2,2 / 2,3 / 2,4 / 2,5 / 2,6 / 2$ etc.
This sequence was created by adding $1 / 2$ to each new fraction.

(3) Write in the missing fractions as you skip count in ${ }^{1} / 3^{\prime}$'s to create this fraction sequence.
$1 / 3,2 / 3$, \qquad $5 / 3$ \qquad 7/3
 ,

(8) Find $3 / 7$ of 56

(9) Find $5 / 8$ of $40=$ \qquad
(10) Find $3 / 5$ of $45=$

(11) Find $5 / 9$ of $54=$

Word problems.

(12) Andy is $\frac{2}{3}$ the way through a cross-country race. If the race is 3000 m long, how far has he run so far?
 $3000 \div$ \qquad $=$ \qquad x \qquad $=$ \qquad
(13) Room 9 pupils are $\frac{3}{4}$ the way through a 40 minute game of soccer. How long have they been playing?

$40 \div$ \qquad $=$ \qquad x \qquad $=$ \qquad
(14) A café has sold $\frac{4}{5}$ of the bread rolls available for sale that day. If there are 50 bread rolls available, how many has the café sold so far?

The aim of this activity sheet is to understand how to order fractions, create a sequence and work with fractions when the top number is greater than one.

Suggested HOME activity:

Using money totals, ask your child to find a fraction of each money total, using the fractions on this worksheet where the top number is 1. Extend the exercise to include fractions where the top number is greater than 1 but less than the bottom number.
Example: Find $\frac{1}{3}$ of $24, \frac{1}{7}$ of $28, \frac{1}{3}$ of $24, \frac{2}{3}$ of $24, \frac{5}{8}$ of 24 , etc.
Sign when
completed:

16 Solving equations

To solve an equation means to work out the number that would go where the letter is.

Examples:

$19+a=27, \quad b+8=25$,
$28-c=6, \quad d-9=12$

Remember that the total on either side of the equals sign, must be the same.

Use any strategy you like to solve these equations. Be prepared to talk about what strategy you used.
$27+a=53$
(2)
$35+b=61$
(3)
(4)
(5)
(6)
(8)
(9)
$75-d=46$

$$
i+83=130
$$

$$
\begin{equation*}
j-65=37 \tag{10}
\end{equation*}
$$

$f-37=65$

$$
\begin{equation*}
20 \times k=120 \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
m \times 6=54 \tag{12}
\end{equation*}
$$

(20)
$52-c=39$
$e+73=98$
$9+19=106$
12)
(13)

$$
\begin{equation*}
240 \div n=60 \tag{13}
\end{equation*}
$$

14)

$$
\begin{equation*}
400 \times p=1200 \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
q \div 10=110 \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
143-h=69 \tag{7}
\end{equation*}
$$

Read each word problem, write an equation, then work out the answer. There may be more than one way to write the equation.
(21) If Jack has $\$ 80.00$ and spends $\$ 42.00$, how much does he have left?

(22) Emma spends $\$ 15.00$ and has $\$ 37.00$ left. How much money did Emma start with?
(23) Kate buys 10 books for $\$ 145.00$ How much did each book cost?
(24) Sam spends $\$ 72.00$ buying 6 C.D's. How much did each C.D. cost?

Bill buys 8 movie tickets for $\$ 72.00$. How much does each movie ticket cost?

(26) In a new classroom there are only 19 chairs. If a class of 33 pupils are to use this room, how many more chairs will they need?
(27) Mark is reading a book that has 120 pages. If he has 53 pages to go, how many has he read?

Suggested HOME activity:

Make up word problems involving everyday events that can be written as equations. Have your child write an equation for each problem.
Example: If I buy 3 C.D.'s for $\$ 36.00$, how much does each C.D. cost? If I have $\$ 30.00$ and spend $\$ 21.00$ on food, how much money do I have left? (Equations would be $3 \times ?=36$ or $36 \div 3=? \& 30-?=21$ or $21+?=30$)

Sign when
completed:

17 Number patterns or sequences

Some number patterns or sequences are created by adding or subtracting a given number.
Example: 3, 8, 13, 18, 23, 28, 33, etc.
How was this number sequence created? Answer: Starting with 3, add 5 to each new number.

Look at each number sequence to work out how it was created, then write the next three numbers in each sequence. Describe how each number sequence has been created.
(1)
$3,9,15,21$, \qquad
(2)
$2,9,16,23$, \qquad , —, \square $-$
(3) $78,74,70,66$,

(4) 81, 72, 63, 54, \qquad ,

As people enter a party, they are given a spot prize ticket numbered from 1 to 50.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

Ben's lucky number is 5 , so the 5 th person gets the first spot prize. He then selects every 4th person, who also gets a spot prize.
(5) On the grid above, circle all ticket numbers that will receive a prize.
(6) List the number sequence you created.
(7) How many spot prizes were won? \qquad

Other number patterns or sequences are created by multiplying or dividing a given number.
Example: 2, 4, 8, 16, 32, 64, 128, etc.
How was this number sequence created? Answer: Starting with 2, multiply each new number by 2.

Look at each number sequence to work out how it was created, then write the next three numbers in each sequence. Describe how each number sequence has been created.
(8) $3,6,12,24$,

(9)

3, $9,27,81$, \qquad \square

(11) $480,240,120$, \qquad ————

Word problem.
(12) A scoop of chips costs $\$ 1.20$. Work out the number sequence that shows the cost of buying 1, 2, 3,4 and 5 scoops of chips.

(13) How many scoops of chips can you buy with $\$ 7.20$?

The aim of this activity sheet is to create number patterns / sequences by adding, subtracting, multiplying or dividing and work out / describe how they were created.
Suggested HOME activity:
Using everyday examples, create your own number patterns by adding or subtracting a constant number from a starting number. Ask your child to work out and describe how the pattern was created.
Example: If a hamburger costs $\$ 3.50$, work out the cost of buying 1, 2, $3,4,5 \ldots$ up to 10 hamburgers to create a number sequence.

[^1]
18 Measuring units - length

In New Zealand we use the metric system.
In the metric system, the metre is the basic unit for measuring length.
A metre is about the length of a long stride or about 3 times the length of this page (A4 size).

(1) Name 5 objects you could measure using the metre as the unit of length.

Metric units for measuring length.

kilometre	1000 times longer than a metre
metre	standard unit for length
centimetre	100 times shorter than a metre
millimetre	1000 times shorter than a metre

Name 2 objects or distances you could measure using the following units for length.
(2) kilometres
(3) centimetres

(4) millimetres

Converting between metres and millimetres.
(5)
$2 m=$ \qquad (7) \qquad $m=6000 \mathrm{~mm}$
(6) $7.5 m=$ \qquad mm
(8)
$\ldots m=4200 \mathrm{~mm}$

Converting between metres and centimetres.
(9) $6 m=$ \qquad cm
(11) \qquad $m=900 \mathrm{~cm}$
(10) $5.7 \mathrm{~m}=$ \qquad cm
(12) $m=840 \mathrm{~cm}$

Converting between millimetres \& centimetres.
Converting between metres and kilometres.
(17) $3000 \mathrm{~m}=\ldots \mathrm{km}$
(18) $9100 \mathrm{~m}=\ldots \mathrm{km}$ (20)_man
When adding and subtracting length
measurements, the 'units' must be the same.
Sam has two pieces of wood,
one is 70 cm long and the other is 1.4 m long.
What is the total length of wood in
metres? Answer: $0.7 \mathrm{~m}+1.4 \mathrm{~m}=2.1 \mathrm{~m}$

Add or subtract these length units.
(21) $4000 \mathrm{~m}+3.5 \mathrm{~km}=$? (answer in metres)
(22) $2.3 \mathrm{~m}+2500 \mathrm{~mm}=$? (answer in metres)
(23) $680 \mathrm{~mm}-47 \mathrm{~cm}=$? (answer in millimetres)
(24) $730 \mathrm{~cm}-6.2 \mathrm{~m}=$? (answer in centimetres)
(25) $5.4 \mathrm{~km}+8200 \mathrm{~m}=$? (answer in kilometres)
(26) $96 \mathrm{~cm}-745 \mathrm{~mm}=$? (answer in millimetres)
$1.3 \mathrm{~m}+54 \mathrm{~cm}+250 \mathrm{~mm}=$? (answer in cm)

Suggested HOME activity:

Demonstrate how long a metre is and ask your child to name at least 5 objects or distances that can be measured using each length unit (mm , $\mathrm{cm}, \mathrm{m} \& \mathrm{~km}$).
Ask your child to convert between units as above in Q5 to Q20 and add or subtract lengths presented in different units, such as in Q21 to Q27.

Sign when
completed:

19 Measuring units - weight (mass)

In New Zealand we use the metric system.
In the metric system, the gram is the basic unit for measuring weight. A gram is a small weight. A packet of rice crackers weighs about 100 grams.

(1) Name 5 objects you could measure using the gram as the unit of weight.

Metric units for measuring weight.

tonne	1000 times heavier than a kilogram
kilogram	1000 times heavier than a gram
gram	standard unit for weight
milligram	1000 times lighter than a gram

Name 2 objects you could measure using the following units for weight.
(2) tonne
(3) kilogram
(4) milligram

Converting between grams and milligrams.
(5)
$79=$ \qquad mg
(7)
(6) $5.4 g=$ \qquad mg (8)

$$
\begin{aligned}
\mathrm{g} & =9000 \mathrm{mg} \\
\mathrm{~g} & =4700 \mathrm{mg}
\end{aligned}
$$

Converting between grams and kilograms.
(9) $8000 \mathrm{~g}=$ \qquad kg
$g=3 \mathrm{~kg}$
(10) $7200 \mathrm{~g}=$ \qquad kg
(12)

Name:
AWS
Converting between kilograms and tonnes.
(13)
4000kg = \qquad \dagger (15) \qquad $k g=6 \dagger$
\qquad \dagger (16)

(14) $7600 \mathrm{~kg}=$

When adding and subtracting weight measurements, the 'units' must be the same.
Joe has two piles of books, one weighs 8500 g and the other weighs 12.4 kg . What is the total weight of books in kilograms? Answer: $8.5 \mathrm{~kg}+12.4 \mathrm{~kg}=20.9 \mathrm{~kg}$

Add or subtract these weight units.
(17) $4000 \mathrm{mg}+4.5 \mathrm{~g}=$? (answer in grams)
(18) $2.3 \mathrm{~g}+3100 \mathrm{mg}=$? (answer in milligrams)
(19) $6.8 \mathrm{~kg}-2400 \mathrm{~g}=$? (answer in kilograms)
(20) $9.2 \dagger-7800 \mathrm{~kg}=$? (answer in tonnes)
(21) $7300 \mathrm{~g}-4.7 \mathrm{~kg}=$? (answer in kilograms)
(22) $9.6 \mathrm{~g}-7400 \mathrm{mg}=$? (answer in milligrams)
(23) $0.8 \mathrm{~kg}+68 \mathrm{~g}+2500 \mathrm{mg}=$? (answer in grams)
(24) $830 \mathrm{~g} \times 6=$? (answer in kilograms)
(25) $3.2 \mathrm{~kg} \div 8=$? (answer in grams)
The aim of this activity sheet is to introduce the 'gram', the
standard unit fr measuring weight. Units for measuring
Suggested HOMME artier weights are also introduced.
Use some kitchen scales. or some other object of known weight, to
demonstrate how light gram is. Using different sized objects, ask
your child which unit for weight would be the best unit to use.
Ask your child to convert between units as above in Q5 to Q16 and
add or subtract weights presented in different units, such as in Q17 to
Q25.
Sign when
completed:

20 Measuring units - volume (capacity)
In New Zealand we use the metric system.
In the metric system, the litre is the basic unit for measuring volume.

A litre is about 4 cups of water or the size of some milk or juice cartons.
(1) Name 5 objects you could measure using the litre as the unit of volume.

Metric units for measuring volume.

kilolitre	1000 times more volume than a litre
litre	standard unit for volume
millilitre	1000 times less volume than a litre

Name 2 objects you could measure using the following units for volume.
(2) kilolitre
(3) millilitre

Converting between measurement units.

1000 millilitres $(\mathrm{mL})=1$ litre (L)

Converting between litres and millilitre.
(4) $7 L=$ \qquad mL (6)

(5) $\quad 9.4 \mathrm{~L}=$ \qquad $m L(7)$
$L=7300 \mathrm{~mL}$

Converting between litres and kilolitres.

(13) How many millilitres of medicine in a 1.2 L bottle?

When adding and subtracting volume measurement, the 'units' must be the same.
Sam has two tins of paint, one holds 750 mL and the other holds 8 L . What is the total volume of paint in litres? Answer: $0.75 \mathrm{~L}+8 \mathrm{~L}=8.75 \mathrm{~L}$

Add or subtract these volume units.

(14) $7000 \mathrm{~mL}+2.5 \mathrm{~L}=$? (answer in litres)

(15) $4.3 \mathrm{~L}+2100 \mathrm{~mL}=$? (answer in millilitres)
(16) $9.5 \mathrm{KL}-3700 \mathrm{~L}=$? (answer in kilolitres)
(17) $9.2 \mathrm{~L}-7800 \mathrm{~mL}=$? (answer in millilitres)
(18) $8600 \mathrm{~mL}-5.2 \mathrm{~L}=$? (answer in litres)
(19) $7.6 \mathrm{~L}-5200 \mathrm{~mL}=$? (answer in millilitres)
(20) $1.2 \mathrm{~kL}+400 \mathrm{~L}+1500 \mathrm{~mL}=$? (answer in litres)
(21) $820 \mathrm{~L} \times 6=$? (answer in kilolitres)
(22) $4900 \mathrm{~mL} \div 7=$? (answer in litres)
The aim of this activity sheet is to introduce the 'litre', the
standard unit for measuring volume. Units for measuring
Suggested HOME less volume are also introduced.
Using some containers or measuring jugs, demonstrate how much
liquid is needed to fill a 1 litre container. Using different sized
containers, ask your child which unit for volume would be the best unit
to use.
Ask your child to convert between units as above in Q4 to Q13 and
add or subtract volumes presented in different units, such as in Q14 to
Q22.
Sign when
completed:

21 Reading scales / measuring skills

 Name:AWS

All measurement instruments have a scale. Being able to read the scale correctly is an important skill.

What measurement unit is on this ruler?
What measurements are given by the pointers A to D ?

The measuring unit is centimetres (cm).
Answers: $A=3.0 \mathrm{~cm}, B=1.2 \mathrm{~cm}, C=4.4 \mathrm{~cm}, D=5.8 \mathrm{~cm}$
Look at this ruler below.
(1) Name the units on the ruler below ...
millimetres or centimetres (circle one)

(2) What are the measurements given by the pointers G to L ?
Example: $2.4 \mathrm{~cm}, 3.9 \mathrm{~cm} \mathrm{etc}$.

(3) Mark and label the points of A to F on this ruler.

(4) How long is this pencil? Answer in $\mathrm{mm} \& \mathrm{~cm}$.
\qquad mm is the same as \qquad cm
(5) Measure these lines to the nearest millimetre.
 Draw a 67 mm line in the space below starting at point A.

A

This diagram of a weighing machine's scale shows the weight of a heavy object.
(7) What are the units on this scale?
(8) How heavy is the object?

(9) Draw an arrow on this scale to show 48 kg .

This diagram of a water storage container has some water in it.
(10) What are the units on the scale on this container?
(11) What is the volume of water in the container?
(12) Another 16L of water is added to the container. Draw the new water level.

\&The aim of this activity sheet is learn to read scales and measure the length of small objects. Remember to
measure from zero on the ruler, not the end.

Suggested HOME activity:

Find a collection of objects from around the house that can be measured using a ruler or tape measure, kitchen or bathroom scales, or measuring jugs. Ask your child to measure various objects using the appropriate instruments.
Example: The width of a door is about 800 mm , a cup holds 250 mL ...
Sign when
completed:

22 Perimeter

Distance around the outside.
Imagine you are at the corner of a soccer field. If you walk along each side and back to your starting point, the distance you have walked is called the perimeter of the field.

Answer: $100 m+50 m+100 m+50 m=300 m$
Look at each shape below and work out the perimeter. Remember to include all sides.
(1)

(2)
\qquad $+$ \qquad $+$

(8) A courtyard has been built using 1 metre concrete squares, as shown in this diagram. Work out the perimeter of the courtyard.

The aim of this activity sheet is to introduce perimeter, 'the distance around the outside'. All closed 2D shapes, with
the starting and finishing point the same, have a perimeter.

Suggested HOME activity:

Find some shapes around your house, for which you can work out the perimeter.
Example: The edge of a table, the boundaries of your properties, etc. where the starting and finishing points are in the same place.
Ask your child to measure ALL sides of the shape using a tape measure, ruler or their own feet. By adding up all measurements, you are working out the perimeter of each shape.

Sign when
completed:

23 Area

"If you can paint it, it has AREA," said Robert.
This shape has been divided up into squares.

Count the number of squares to work out the area of this shape.
Answer: 20 squares
Work out the area of these shaded shapes by counting the 'whole' squares and estimating the area of the 'partly' shaded squares.
(1)

(2)

(3) Draw two different shapes in the grid below that both have an area of 12 squares.

This shape is made up of 1 row of 5 squares.

| |
| :--- | :--- | What is the area?

If the shape was made up of 4 rows of 5 squares, what would the area be?

Answers: 5 square units, $4 \times 5=20$ square units
Work out the area of this rectangles by first counting the number of squares in ONE row.
(4)

1 row $=$ \qquad squares

Area $=$ \qquad rows of \qquad $=$ \qquad sq units

The diagrams below are not drawn to scale, but imagine that each square is 1 square metre.
The units for your answers will be 'square m '.
(Could be written as 'sq m ' or m^{2})
Work out the area of each rectangle or square.
(5)

$3 m$
(6)

$6 m$

Work out the area of each rectangle $(A=b h)$.
(10)

(12)

(11)

(13)

Suggested HOME activity:

Draw shapes on maths paper and ask your child to work out each area by counting or estimating the number of squares.
Ask your child to work out the area of a shape given how many squares in ONE row and how many rows. Such a shape is called a rectangle or square.
Example: If 1 row is 5 squares long, what is the area of a rectangle made up of 3 rows. $5+5+5=15$ square units.

Sign when

completed:
"If you can fill it, it has VOLUME," said Steve. "How many cubes in this pile?" asked Steve.

Remember to count the ones you cannot see.
Answer: 8 cubes (2 you cannot see)

This shape is said to have a volume of 8 cubes.
Work out the volume of each pile of cubes. Remember to include cubes you cannot see.
(1)
(2)

This big box is to be filled with smaller boxes (cubes).
The bottom layer has already been filled.

(3) How many small cubes are in the bottom layer? \qquad cubes
(4) How many layers of cubes will this box hold? layers
(5) Work out how many small cubes this big box will hold.
 cubes
(6) In a second box, the bottom layer can hold 20 cubes. If there are 5 layers, how many cubes can this box hold?

Using 'lego', or similar blocks, build some shapes with the following volumes:

(11)

40 cubes

For this 3D shape, the volume can be worked out if we know three measurements
the base, the height and the depth ($V=$ bhd).

For the next two questions, have a supply of small lego blocks to model each question, if required.
(12) Work out the number of blocks needed to make a shape that has ... a base of 3 blocks, a height of 5 blocks, a depth of 4 blocks.

(13) Work out the number of blocks needed to make a shape that has ... a base of 6 blocks, a height of 4 blocks, a depth of 3 blocks.

连The aim of this activity sheet is to revise the concept of volume. The volume of simple 3D shapes can be worked out if you know the base, height and depth.

Suggested HOME activity:

Have a selection of blocks and ask your child to build something with a known volume, as above. Note that different structures can have the same volume if they contain the same number of blocks.

Sign when

 completed:"Yesterday was the hottest day this year," said Joe. "The temperature was $41^{\circ} \mathrm{C}$."

The special unit for measuring temperature is called degrees.

Degrees centigrade or degrees celsius. Example: $10^{\circ} \mathrm{C},-3^{\circ} \mathrm{C}$

Water freezes at $0^{\circ} \mathrm{C}$ and boils at $100^{\circ} \mathrm{C}$.
(1) What is the name of the instrument used to measure temperature?
(2) What is the temperature shown on each thermometer diagram A to D below?
\qquad ${ }^{\circ} \mathrm{C}$
(3) Draw each temperature on the thermometers E to H below.

Use one of the temperature scales above to help you answer the questions below.
(4) If the temperature was $15^{\circ} \mathrm{C}$ then rises $6{ }^{\circ} \mathrm{C}$, what is the new temperature?
(5) If the temperature was $13^{\circ} \mathrm{C}$ then falls $8^{\circ} \mathrm{C}$, what is the new temperature?
(6) In Toby's living room the temperature is $17^{\circ} \mathrm{C}$. When he turns on the heat pump, the temperature raises by $6^{\circ} \mathrm{C}$.
What is the temperature in Toby's living room now?

(7) The temperature of David's milo drink is $91^{\circ} \mathrm{C}$. When the temperature dropped by $45^{\circ} \mathrm{C}$ it was cool enough to drink.
What is the temperature of David's milo drink now?

In the table below are winter temperatures recorded at 7:00 a.m. for one week.
(8) What was the recorded temperature on Friday?

What was the warmest recorded temperature?

			\cdots	
Day	${ }^{\circ} \mathrm{C}$			
Sunday	$3^{\circ} \mathrm{C}$			
Monday	$-2^{\circ} \mathrm{C}$			
Tuesday	$1^{\circ} \mathrm{C}$			
Wednesday	$7^{\circ} \mathrm{C}$			
Thursday	$-1^{\circ} \mathrm{C}$			
Friday	$0^{\circ} \mathrm{C}$			
Saturday	$-5^{\circ} \mathrm{C}$			

\qquad

recorded temperature?

On Thursday by 10:00 a.m. the temperature had gone up by $7^{\circ} \mathrm{C}$. What is the new temperature?

At 2:00 p.m. on Saturday, the temperature was still only $4^{\circ} \mathrm{C}$. Since 7:00 a.m., by how many degrees had the temperature gone up?

The aim of this activity sheet is to revise the units for measuring temperature and how to read a thermometer and work out temperature changes.

Suggested HOME activity:

If you have a weather thermometer at home place it in different situations and record the change in temperature over time. Watch the weather report on TV and record the temperatures of the cities throughout NZ over a 3 to 5 day period. Work out the change in temperature between days for each city.
Example: Nelson: Monday $24^{\circ} \mathrm{C}$, Tuesday $28^{\circ} \mathrm{C} \ldots$... rise of $4^{\circ} \mathrm{C}$

[^2]The time on this analogue clock is 10 past 8.
Not all clocks have hands.
Some clocks use only numbers and are called digital clocks.
This is 10 past 8 on a digital clock

$08: 10$
Draw the hands on the analogue clock or show the time on a digital clock or write the time in words.
(1)

Time
twenty past seven
(2)

Time

Time

What is the new time?
(4) A roast chicken takes $3 \frac{1}{2}$ hours to cook. If it went into the oven at 3:50, when will it be ready? (answer in words)
(5) If a 50 minute TV programme finished at 20 past 7 , at what time did it start. (answer as digital time)

(6) The school play lasted for $1 \frac{3}{4}$ hours and finished at five past eight.
At what time did it start? (answer on this clock face)

When writing 24 hr digital time, 12 is added to all times in the afternoon. Example: 2:45 a.m. would be written as 0245, whereas 2:45 p.m. is written as 1445.

Write in the missing times, a.m., p.m. or 24 hr .

a.m or p.m. time		24hr time
5:12 a.m.	7	(7)
(8)	\leftarrow	0950
7:46 p.m.	\rightarrow	(9)
(10)	\leqslant	1527
11:55 p.m.	\rightarrow	(11)
(12)	\leqslant	1906
12:25 p.m.	\rightarrow	(13)

The numbers of this diagram show the time (minutes) it takes for a train to travel between stations.

(14) If the train leaves at 8:45 a.m, use this table to work out the time the train arrives at each station.

Station	Time
Central Station	8:45 a.m.
Station 1	
Station 2	
Station 3	
Station 4	

(15) How long is the trip from

Station 1 to Station 4?
 The aim of this activity sheet is to work with time, convert between analogue and digital time, describe time as a.m. or p.m., 24 hr time and prepare a timetable of events.

Suggested HOME activity:

Use both analogue time and digital time, ask your child to convert between a.m. / p.m. time and 24 hr time.
Example: 10 past 5 in the morning is the same as $5: 10$ a.m. or 05:10 Make up a timetable for a bus or train route. Ask your child to work out how long it takes to get between stops.
Example: How long is the travel time if I get on the bus at 7:56 a.m. and get off at 9:07 a.m.?

Sign when completed:

27 2-Dimensional shapes

(1) Name these 2D shapes using the words on the box below.

Shape	Name of shape
2	
2	
2	

circle, oval, triangle, square, rectangle, diamond or rhombus, pentagon, hexagon, octagon

Parallel lines are the same distance apart.
Example:
Perpendicular lines cross each other at right angles, or meet each other forming a right angle.
Example:
(A right angle is a quarter turn.)
(2) On this diagram below, draw a circle around a pair of parallel lines and label them with an \mathbf{A}.

(3) On the same diagram above, draw a circle around a pair of perpendicular lines and label them with a B.

Name:
AWS
"What shape has three corners and three straight sides?" asked Jasmine.

Answer: a triangle

Imagine you are talking to someone on the telephone.
Write down what you would say, as you describe each of these shapes. Use words such as side, corner, straight and curved.

What are some of the differences between shapes A \& B and what do they have in common?

[^3]
28 3-Dimensional shapes

The many 3D objects are based on a simple 2D shape.
Example: A cylinder is based on a circle. If you stacked some 50 c coins on top of each other, it would look like a cylinder.

(1) Name these 3D objects (A to E) using the words in the box below.
 sphere (ball)

This block of cheese has been sliced as shown.
What shape would the sliced end look like?
Answer: a rectangle

If you cut through an object, you see a cross-section of the object.

Look at these objects and describe what 2D shape you would see if they were sliced along the dotted line.
(2)

AWS
(4)

(5)
(6)
"This object has 8 corners, 12 edges and 6 faces. Opposite faces are shaped like rectangles and the same size.
 Use words such as top, bottom, end, side, opposite, corner, edge, face, straight, curved and 2D shape names.

The aim of this activity sheet is to describe various 3D objects by their features and then determine what 2D shape the 3D object was derived from.

Suggested HOME activity:

Play a game of 'I spy' by describing a 3D object using the words on this worksheet and ask your child to name the object.
Example: "I have a top, a bottom and 4 sides, all of which are the same size. What 3D object am I?"

Sign when
completed:

29 Maps / Compass directions

If you are map reading, knowing the compass directions will be helpful.
What compass point is opposite west?
What compass point is opposite south?

Answers: east and north.

(1) What do the letters on the compass stand for?
$N=$ \qquad $S=$ \qquad $E=$ \qquad , $W=$ \qquad

(2) Starting at point A, describe how to get to point B and draw a line from A to B.

On the grid above, follow each instruction below and draw the position of each dot, B to F and a line to join each pair of dots as you go.
(3) Starting at point B, go 3 squares north. Draw a dot and mark with a letter C.
(4) Starting at point C, go 2 squares north, then 4 squares east. Draw in dot D.
(5) Starting at point $D, g \circ 2$ squares south, then 4 squares east. Draw in $\operatorname{dot} E$.
(6) Starting at point E,go 3 squares south and draw in $\operatorname{dot} F$.
(7) Join $\operatorname{dot} F$ to $\operatorname{dot} A$ and describe how you get from $\operatorname{dot} F$ to $\operatorname{dot} A$.
(8) Name the shape you have drawn.

AWS
Below is a map of a playground. The path drawn on the map is that of Tom's dog Bella chasing a ball. Each square is 1 metre across.

Bella ran to the ball. To do this, she ran 2 metres west / 1 metre south.
(9) Describe the distance in metres and the direction using the words north, east, south and west to describe how Bella chased the ball around the playground ... A to B
... B to C...
... C to D...

E to F...
(10) If Bella finally chased the ball 4 metres north / 3 metres east, draw the final resting place of the ball and mark it with the letter G. Join point F and G with a line.

The aim of this activity sheet is to follow directional instructions to find or create pathways and understand the four points of the compass.

Suggested HOME activity:

Draw a maze or a map of your home, inside or outside. Create a series of instructions that create pathways that can be drawn on your maze or map or create instructions that your child can physically follow as they walk around your home. Use compass directions as well.
Example: Starting at this tree facing north, take 4 steps towards the shed, turn anti-clockwise west, then take 6 more steps ... etc.

Sign when
completed:

30 Reading map (grid) references

"Where is Cranmer Square?" asked Joe. The map below is divided up into squares. Along the sides of the map are numbers and letters. By using these numbers and
 letters, you can find a place on the map.

Answer: Cranmer Square is in the square $3 A$. $3 A$ is called a grid reference.

Use the grid references on this map above to find these streets or places. Some answers may be more than one grid reference.
(1) Name the square that Knox Street is in.
(2) Name the square that the Town Hall is in.
(3) Colombo Street starts in square 5 E .

Name the other squares that Colombo Street passes through.
(4) Name the four squares that Salisbury Street passes through.
(5) Name the hotel in square 2B.
(6) Name the school in square 2A.
(7) Name the sport that can be played in 4D.

Battleships is a game played on a grid, using grid references to find where ships have been placed on the grid.

On what squares is this battleship placed?

Answer: $1 C, 2 C$ and $3 C$

Below is a battleship grid where ...
$S=$ submarine (1 square), $D=$ destroyer (3 squares),
A = aircraft carrier (4 squares)

J									5	
1								-		
H			S				-			
G		,					4,	4.	4.	$\stackrel{4}{4}$
F					D					
E	V				娄					
D					1.					
C					1					
B	\%	O.	D				S			
A		-								
	1	2	3	4	5	6	7	8	9	10

(8) Mark these squares on the grid with an X. $4 \mathrm{~A}, 7 \mathrm{H}, 10 \mathrm{E}, 3 \mathrm{~B}, 8 \mathrm{E}, 5 \mathrm{~J}, 9 \mathrm{I}, 1 \mathrm{~F}, 2 \mathrm{~B}, 6 \mathrm{G}, 1 \mathrm{~B}$
(9) Name any ship you have crossed out.

Write the grid reference for where the aircraft carrier and submarines are placed on the grid.

The aim of this activity sheet is to learn how to locate places on a map that has been divided up into squares or grids. The numbers / letters along the side are called grid references.

Suggested HOME activity:

Using a city street map or country map, ask your child to locate various places using a grid reference.

Create your own maps divided into squares or girds on which points can be located or play a game of battleships as above.

Sign when
completed:

31 Rotation \& reflection

Name:
AWS
When talking about rotation, we use words such as clockwise, anti-clockwise ...

0
... quarter turn and half turn to describe how an object has been moved.

Use the rotation words above to describe how each arrow has been moved.

The shaded arrow is the new position.
(1)

When you look in a mirror, you see your reflection.
Everything looks the same, except it is back to front.

To reflect this picture, the mirror line would be placed on the arrowed line.

Draw a line(s) to show where the mirror line(s) would go to reflect these pictures or shapes.

N.ln

Half of each shape is missing. The arrow is the mirror line. Draw the complete shape, after it has been reflected.

(13)
quarter turn anti-clockwise

Some alphabet cards have been used to create these patterns using rotation.
Draw the next 2 letters for each pattern and describe how each pattern was created.
(5)

(6)

(7)

(8)

32

This cereal box has been moved by sliding it along a table top.

The cereal box has not been turned around or flipped over.

Such a movement is called a translation.
Each group of pictures below have been lined up to make a pattern.
Write under each group of pictures, how the patterns were created by translation, reflection or rotation.

(2)
(3)
(4)

(5) Translate this pattern to the opposite side of the arrow, without turning the pattern around or over.

(6) Draw two designs to show you understand translation.
The same pattern should be on each side of the arrow.

(8)

Draw a small shape that you can redraw twice as large, to show you understand enlargement.

(9) | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

82
The aim of this activity sheet is to revise translation and enlargement. Translation involves sliding the same object to a new position. For enlargement, the shape changes size but does not slide, flip or rotate.

Suggested HOME activity:

Looking around your home, ask your child to point out groups of objects that demonstrate translation or enlargement.
Example: A picket fence, strips of wallpaper, a line of bottles in a row.
Draw various patterns that involve sliding or translation and using maths paper, draw designs involving enlargement.
Sign when
completed:

33 Sorting data using tally charts

Sam conducted a survey.
He asked pupils in Rooms 4 and 5 ... "How many pets do you have at home?"
(1) Use the tally chart below to organise the data he collected.

Number of pets
$2,3,1,4,6,2,3,5,1,4,2$,
$3,2,1,3,3,0,3,4,1,2,3$,
$2,3,1,4,1,5,4,0,2,3,1$,
$3,2,5,0,2,3,5,2,5,4,0$

Make a mark in the tally column next to each number as you go through the list above.

Number of pets	Tally	Total
0		
1		
2		
3		
5		
6		

(2) How many pupils had 2 pets?
(3) How many pupils had 5 pets?
(4) What was the most common number of pets pupils had?
(5) What was the least common number of pets pupils had?
(6) How many pupils had 7 pets?
(7) How many pupils did Sam survey?

Mr McGregor has a problem with caterpillars on his cabbages.
One day he counted the number of caterpillars on each cabbage plant. These were his results.

Number of caterpillars

$5,6,9,5,7,8,6,7,10,7,5,6,8,9$,
$6,7,8,7,9,6,7,7,6,8,9,10,9,7$, $8,7,8,9,10,5,6,5,8,6,4,6,8,7$, $9,4,5,6,9,5,7,4,10,9,5,8,9,10$
(8) Complete the tally chart below to organise this data.

Number of caterpillars per plant	Tally	Total
4		
5		

(9) What was the most common number of caterpillars on a cabbage?
(10) What was the least common number of caterpillars on a cabbage?
(11) How many cabbages did Mr McGregor have altogether? using tally charts, then answer questions appropriate to the data.

Suggested HOME activity:

Collect information that can be presented in a table. This may require you to ask extended family or friends to answer some questions to collect the data. Then ask your child questions that relate to the data. Example: A table showing favourite foods your family / friends eat. Create your own tables, with made up data and then ask your child to talk about the data in the table.

Sign when
completed:

34 Understanding / creating graphs

Name:
AWS

Data can be displayed in many ways.
This column graph shows the number of pupils in Room 3 who play soccer (S) and rugby (R) on Saturdays.
(1) How many play soccer and how many play rugby?
soccer (S) = \qquad
rugby $(R)=$ \qquad

Sport played

This table shows the number of days it rained during the first six months of a year.

(3) On how many days in May was it raining?
(4) In which month did it rain 4 times?
(5) On how many days altogether did it rain during these months?

This pictogram shows the number of pet cats and dogs Room 5 pupils have.

5

Key: 1 picture $=\mathbf{2}$ pets
(6) How many pet cats and pet dogs do they have?
cats $=$ \qquad dogs $=$ \qquad

This table shows the number of vowels used in the first 50 words of a novel.

a	a	e	A	o	u
Total	48	44	34	24	18

(7) Complete this pictogram using the data in the table.

Key: 1 picture $=4$ vowels

This dot plot graph shows the number of boys and girls in Rooms 2 \& 3 who like skate boarding.

Rooms 2 \& 3 boys and

(8) How many boys and how many girls skateboard?
boys $=$ \qquad
girls = \qquad
(9) Draw a dot plot graph for the data in the table below.

Fruit	Total
	5
	10
	3
	7
	9

男manThe aim of this activity sheet is to create three different data displays - a column graph, a pictogram and a dot plot graph, and answer questions appropriate to the data.

Suggested HOME activity:

Using data collected from around your home or the data in the tally charts in Worksheet 34, have your child create some column graphs or pictograms. For pictograms involving large groups of data, each picture can be worth more than one.
Example: If there were 30 items, by making each picture worth 5, only 6 pictures would be drawn.

Sign when

completed:

A stem and leaf graph looks a bit like a leaf. Example: Jacqui counted the number of red jelly beans in 12 large packets.

$$
29,31,28,42,38,27,35,33,41,34,36,26
$$

As these numbers are in the 20's, 30's and 40's, the numbers 2, 3 and 4 go in the 'stem' part of the graph.

$2,8,7,6$	The second numbers form 2	the 'leaf' part of the 3
$4,8,5,3,4,6$	graph and are added to the graph in the order	
listed.		

Matthew recorded the number of runs each batsman scored in a cricket match, in a stem and leaf graph.

1	7,9
2	$3,9,4$
3	6,8
4	$2,0,5$
5	9

(1) If the first 2 scores are 17 and 19, what are the other scores shown in this stem and leaf graph?

(2) What was the highest score? $\xrightarrow{\square}$
(3) What was the lowest score?
(4) How many runs did the team score altogether ?
(5) Draw a stem and leaf graph for the numbers in this box.

63,59,
87, 71,
55, 76,
69, 65,
70, 64,
80,73

Data that changes with time can be graphed on a time-series graph.
Example: Jack has been unwell. He recorded his temperature every hour for 4 hours. These results are shown on the graph.

Each day for a week, starting on Sunday, the air temperature $\left({ }^{\circ} \mathrm{C}\right)$ at the airport at 3:00 p.m. was recorded. These were the results.

$24^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$18^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$	$26^{\circ} \mathrm{C}$	$22^{\circ} \mathrm{C}$	$17^{\circ} \mathrm{C}$

(6) Complete the time series graph by plotting the data in the table, joining each point with a straight line.

Temperature (${ }^{\circ}$ C)

(7) What was the temperature on Tuesday?
(8) What was the difference in temperature between the hottest and coldest days?

[^4]
36 Conducting an investigation

"Which sport do pupils in Room 5 like to play more, soccer or rugby?" asked Sam.

To answer this question, Sam conducted an investigation by asking a simple question... "Do you prefer to play soccer or rugby?"

Consider this question ...
"Which is the most popular singing group
 that pupils in your class listen to?"
(1) As you investigate this question, how would you collect, record and organise your data?

(4) Draw a column graph, pictogram or dot plot to the display your results in Q3.
(5) Write one statement about your results.

Westmorland Primary School investigated ... "Where will we go on a school outing?"

C	C	A	D	C	B	B	C	D	C	A	D	C
B	C	D	C	C	A	A	D	B	C	A	D	C
B	C	D	C	D	B	C	D	A	C	D	B	C
A	C	D	B	D	B	A	C	B	B	B	D	C

(5) Look at the results of their investigation.

Write 4 points based on these results.

Suggested HOME activity:

Make up an investigation. Ask your child to come up with questions that could be asked, who is going to be asked and how the data is to be collected and displayed.
Example: What is the most popular holiday place in New Zealand?

Here are three piles of blocks.
If all piles had the same number of blocks, how many blocks would there be in each pile?

Add the number of blocks in all piles $(3+2+4=9)$,
then divide your answer by the number of piles $(9 \div 3=3)$. Answer: 3 blocks in each pile.
By doing this, you are finding out the 'mean' or average number of blocks in each pile.

Work out the mean or average of each group of numbers.
Question 1 has been done for you.
Add up all 4 numbers, then divide your answer by 4 .
(1) $8,4,5,7 \quad 8+4+5+7=24,24 \div 4=6$
(2) $7,9,5$
(3) $4,8,9,7$
(4) $2,9,5,6,8$
(5) $11,3,8,10,3$
(6) $13,9,11,7$
(7) $23,19,21$
(8) 103,97
(9) $11,13,8,2,11$
(10) $43,61,16$

Joe likes to play soccer after school everyday. Last week he played for 2 , 3, 1, 2 and 2 hours.

(11) How many days in a row did Joe play soccer?
(12) How many hours in total did Joe play soccer last week?
(13) What is the mean number of hours per day Joe played soccer?

In one week the pupils in Room 3 each read some books, as shown below.

$$
3,1,2,4,1,3,2,1,2,1,3,1
$$

(14) Work out the mean number of books read by these pupils.

In a running race, the fastest time was 29 minutes and the slowest time was 42 minutes.

The difference between the fastest and slowest time is called the range.
 Example: 42-29=13 minutes.
In this running race, the range of the times was 13 minutes. (Range = largest number - smallest number)

Work out the range of each group of numbers. Question 1 has been done for you. 9-1=8
$8,4,5,7,9,5,6,3,1$
9-1 $=8$
(16) $9,14,18,3,7,9,5,6,9$
(17) $23,65,82,14,67,10,54$
(18) $96,14,53,12,84,63,76$
(19) $64,18,120,53,42,37$
(20) $84,27,19,34,61,85,29$

Some of the pupils in Room 8 have had their heights measured in centimetres, as shown below.

$$
152,148,160,138,143,135,139,132,145
$$

(21) Work out the range of height for these pupils.

The highest daily temperature for a week is shown in the table below.

$25^{\circ} \mathrm{C}, 23^{\circ} \mathrm{C}, 19^{\circ} \mathrm{C}, 27^{\circ} \mathrm{C}, 34^{\circ} \mathrm{C}, 26^{\circ} \mathrm{C}, 31^{\circ} \mathrm{C}$
(22) Work out the range of these temperatures.

The aim of this activity sheet is to work out the mean or average for a list of numbers or scores and work out how spread out the scores are, called the range.

Suggested HOME activity:

Collect or create a list of scores (numbers) and using these scores, work out the mean (average) and range of the scores.
Example: The hours spent playing computer games etc.
We sometimes call the mean the 'average', but there are two more types of 'averages' called the medium and the mode, that you will learn about on the next worksheet.

Sign when
completed:

38 Median and mode

Another type of 'average' is called the median. The median is the middle score, once the scores have been placed in order from smallest to largest.
Example: 2, 3, 5, 6, 7, 8, 12, 20, 30

As these scores are in order, start counting one score off each end until you reach the middle. The median (middle) score for this list is 7.

Work out the median for each list of scores. Remember the score MUST be in order from smallest to largest.
(1) $1,3,6,9,11$
(2) $6,8,9,15,19,21,23$
(3) $21,29,35,37,48,53,67$
(4) $1,4,6,9,10,11,16,18,20$
(5) $3,3,3,4,4,4,5,5,5,6,8$

If there is an even number of scores, there will be two scores left in the middle. The median is half way between these scores.
Example: 3, 6, 8, 12 median $=7$ ($6 \& 8$ are in the middle, halfway is 7)

Work out the median for each list of scores
(6) $9,10,14,21$
(7) $6,9,15,17,21,27$
(8) $21,24,26,30,38,45,53,65$
(9) $8,15,42,68,72,91$
(10) $8,9,14,15,16,18,21,28$

In one week the pupils in Room 7 each read some books, as shown below.

$$
3,1,2,4,1,3,2,1,2,1,3,1,3
$$

(11) Work out the median number of books read?

Another type of 'average' is called the mode.
The mode is the most common score.
Example: This list shows the shoe size of shoes sold this week.

$$
7,9,8,9,6,10,9,8,9,10,9,7,9
$$

What is the most common size sold?

The most common size was 9 , therefore the mode for these scores is 9 .
There can be more than one mode for a list
Work out the mode for each list of scores.
There may be more than one answer.
(12) $2,2,3,3,3,4,4,6,7,7,8$
(13) $9,9,8,7,3,8,9,6,8$
(14) $12,6,8,9,6,7,6,9,12,9,6$
(15) $3,4,6,8,3,5,3,7,5,3,5,3$
(16)
$10,7,9,8,7,6,7,5,7,2,10,5$
Every time a T-shirt is sold, its size is noted. Below is a list of the sizes sold.
$8,10,10,8,12,8,12,10,8,8,12,8$
(17) Work out the mode
size for the T-shirt sales.
(18) Why would it be helpful for a shop keeper to collect this data?
(19) Work out the median T-shirt size?

朚
The aim of this activity sheet is to work out two different types of 'averages' - median and the mode. The median is the middle score, given the scores are in order. The mode is the most common score (there may be more than one).

Suggested HOME activity:

Collect or create a list of scores (numbers) and using these scores, work out the median and mode of the scores.
Example: The height of people in your family or their shoe sizes.
Depending on what you are dealing with, one type of 'average' will be more suitable than another.

Sign when
completed:

An outcome is what happens when you have a choice. Sometimes finding all possible outcomes can be difficult. Using a box or grid can help.
Example: Two coins are tossed in the air.

Head (H) HH HT Tail (T) TH How many outcomes are there?
Answer: four HH = head/head, HT = head/tail, etc.

	Saturday (Sa)	Sunday (Su)
Horror (H)	H / Sa	H / Su
Comedy (C)	C / Sa	C / Su
Action (A)	A / Sa	A / Su

(1) If Peter's choice was $C /$ Su, what does it mean?
(2) How many choices (outcomes) does Peter have?

For lunch, Ryan has a choice of either a ham roll (HR), a salad roll (SR) and a choice of either an apple (A), an orange (O), a pear (P) or a banana (B).
(3) Guess how many possible food choices or outcomes you think Ryan has for lunch?
(4) Use this table to work out what Ryan can eat at lunchtime. (Write letters only)

	A	0	P	B
$H R$				
$S R$				

(5) What does SR/O mean?
(6) List all possible choices.
(7) How many choices (outcomes) does Ryan have?

Tree diagrams are another way of working out all possible outcomes.
Example: Two coins are tossed in the air, list all possible outcomes.

By following each branch of the tree, you can work out all outcomes.
Answer: HH, HT, TH, TT (4 outcomes)
Carol has a choice of tea or coffee, with or without milk.

(8) Use the tree diagram to list all possible choices or outcomes

Andrew has to make a dentist's appointment for either Monday, Tuesday or Friday, either in the morning or the afternoon.

(9) Write in the missing words to complete this tree diagram to show all possible outcomes.

(10) How many possible outcomes are there? \qquad
$\%$

Suggested HOME activity:

Create events that involve choices which your child can use grids or tree diagrams to name all possible outcomes.
Example: You are allowed two jelly beans from this packet. List all the possible colours the jelly beans could be, i.e. red/black, red/white.

Sign when
completed:

40 Simple probability experiments

In Adam's club there are 30 members. What chance or probability does he have of being club captain?
As there are 30 members in his club and only one of him, he has 1 chance in 30 of being club captain.

Written as 1 out of 30 or $1 / 30$.
(1) If a coin is tossed in the air, what is the chance that it lands on heads?
\qquad out of \qquad or
(2) Fred has been selling raffle tickets.

If there are 200 tickets, what is the chance of winning first prize?
out of \qquad or
(3) Miri has bought 10 tickets in a raffle. If there are 500 tickets, what is the chance of her winning a prize?
\qquad out of \qquad or
(4) If you bought 2 tickets in a raffle and have a 1 out of 200 chance of winning a raffle, how many tickets are in the raffle?
(5) If you roll a six sided die (dice), what is the chance that ...
... the number 6 comes up? out of \qquad
... a number 1,2 or 3 comes up?
\qquad out of \qquad or
... the number 7 comes up?
\qquad out of \qquad or
(6) In a bag there are 60 marbles. If the chance of taking a red marble out of the bag is $1 / 3$ how many red marbles are in the bag?

If the chance of taking a blue marble out of the bag is $1 / 6$ how many blue marbles are in the bag?

These number cards are to be used for a game of memory.

| 2 | 3 | 1 | 3 | 5 | 2 | 5 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(8) How many number 2 cards are there?
(9) How many number 5 cards are there?
(10) How many number 1 cards are there?
(11) How many cards are
there altogether?
(12) What is the chance of turning over a number 2 card? out of \qquad or
(13) What is the chance of turning over a number 5 card?
out of \qquad or
(14) The card you have just turned over had a chance of $5 / 40$ or $1 / 8$ of being selected. What number was on the card?
(15) Why do you have a greater chance of turning over a number 1 card than a number 4 card?

Suggested HOME activity:
Create similar questions as on this activity sheet to reinforce simple probability.
Example: Place 5 red, 3 green and 2 white blocks in a bag.
Ask your child to select a particular coloured block and describe the chance of selecting that block ... 2 out of 10 chances (a white block).

Sign when
completed:

1	2	3	4
(2) sixty-five (3) eighty-three (4) three hundred and sixteen (5) one thousand and ninety-seven (6) eight thousand, three hundred and two (7) fifteen thousand, three hundred and sixty (8) seventy-six thousand and two		(3) five point zero two (4) eighty-nine point six (5) forty-three point eight seven (6) three hundred and fifty point one three (7) eighteen point zero one nine (8) fifty-eight point five one three	
5			8
		$8.04,12.6,18.3$ (2) 23.71 m (3) 23.37 m (4) 23.65 m (5) $23.71,23.65,23.52$, $23.48,23.37$ (6) 6 (7) 3 (8) $30.1,31.9,32.9$ (9) $30.1,31.9,32.9,33.4$, $34.4,35.8,36.3,37.7$ (10) 0.987 kg (11) 1.036 kg (12) 1.012 kg (13) 1 kg (14) $0.987,0.996,1.012$, $1.023,1.036$ (15) $14.9572,14.9725$, 14.9752, 15.000, $15.2479,15.2497$, 15.4279	(1) $\$ 60$ (6) $\$ 640$ (2) $\$ 80$ (7) $\$ 790$ (3) $\$ 100$ (8) $\$ 270$ (4) $\$ 70$ (9) $\$ 570$ (5) $\$ 150$ (10) $\$ 920$$(11)$ 300 (16) 700 (12) 800 (17) 800 (13) 200 (18) 500 (14) 400 (19) 300 (15) 200 (20) 800(21) 3.5 (26) 17.3 (22) 7.6 (27) 28.8 (23) 1.9 (28) 124.8 (24) 3.8 (29) 133.7 (25) 1.6 (30) 813.2 (31) $\$ 80+\$ 80=\$ 160$ (32) $\$ 160+\$ 50=\$ 210$ (33) $\$ 100-\$ 60=\$ 40$ (34) $\$ 230-\$ 70=\$ 160$ (35) $\$ 300+\$ 700=\$ 1000$ (36) $\$ 600+\$ 400=\$ 1000$ (37) $\$ 1100-\$ 500=\$ 600$ (38) $\$ 2400-\$ 1000=\$ 1400$ (39) $\$ 7.70+\$ 8.30=\$ 16.00$ (40) $\$ 9.50+\$ 3.90=\$ 13.40$ (41) $\$ 16.80-\$ 9.50=\$ 7.30$ (42) $\$ 20.00-\$ 8.40=\$ 11.60$

17	18	19	20
(1) $\ldots \underline{27}, \underline{33}, \underline{39}$ Begin with 3, then add 6 to each new number (2) $\ldots \frac{30}{2}, \frac{37}{}, \frac{44}{7}$ (3) $. . .6 \mathbf{6 2}, \underline{58}, \underline{54}$ $\ldots 78$, subtract 4 (4) $\ldots \frac{45}{81}, \underline{36}, \frac{27}{}$... 81, subtract 9 (5) (6) $5,9,13,17,21,25$, 29, 33, 37, 41, 45, 49 (7) 12 (8) $. . .48, \underline{96}, \underline{192}$ $\ldots 3$, multiply by 2 (9) $\ldots \frac{\mathbf{2 4 3}}{3}, \underline{\mathbf{7 2 9}}, \underline{\mathbf{2 1 8 7}}$ (10) ... 80, 160, 320 $\ldots 5$, multiply by 2 (11) $\ldots \frac{60}{48}, \frac{30}{}, \frac{15}{}$ (12) \$1.20, \$2.40, \$3.60, \$4.80, \$6.00 (13) 6		$\left.\begin{array}{\|cc\|c\|}\hline \text { (1) } \begin{array}{l}\text { Possible answers } \\ \text { - a peece of fruit, } \\ \text { - a small plastic toy, } \\ \text { - a piece of bread, } \\ \text { - empty coffee cup, } \\ \text { - packet of biscuits }\end{array} \\ \text { (2) } & \text { a car, a truck }\end{array}\right\}$	
21		23	24
	(1) $\begin{gathered} 10+12+8 \\ =30 \mathrm{~cm} \end{gathered}$ (2) $6+15+6+15$ $=42 \mathrm{~m}$ (3) $5+9+5+5+9+5$ $=38 \mathrm{~mm}$ (4) $11+7+7+11$ $+7+7=50 \mathrm{~cm}$ (5) 9 m (6) 28 m (7) (7) 210 m (8) 28m	Please Note: due to estimating some squares, your answers may vary by one or two. (1) 21 square units (2) 21 square units (3) Own shapes (4) 1 row = 11 squares Area $=4$ rows of 11 $=44$ sq units (9) base \times height $=$ area 2 (10) $\quad 15 \mathrm{~cm}^{2}$ (11) $20 \mathrm{~m}^{2}$ (12) $12 \mathrm{~m}^{2}$ (13) $42 \mathrm{~cm}^{2}$	(1) 16 (2) 16 (3) 9 (4) 3 (5) 27 (6) 100 (7) to No answers supplied (11) (12) 60 blocks (13) 72 blocks

25	26	27	28
		(4) 8 corners, 8 sides, all sides are straight lines and same length - this shape is an octagon. (5) 5 corners, 5 sides, all sides are straight lines and same length - this shape is a pentagon. (6) 6 corners, 6 sides, all sides are straight lines and same length - this shape is a hexagon. (7) \boldsymbol{A} and \boldsymbol{B} have 4 sides and 4 corners. Opposite sides are equal length. All angles in \boldsymbol{A} are equal but not in \boldsymbol{B}, although opposite angles in \boldsymbol{B} are equal.	
29			32
(1) $\mathrm{N}=$ North, $\mathrm{S}=$ South E = East, $\mathrm{W}=$ West (2) 4 squares west then 1 square north (3) to (6) (7) 1 s square south, 4 squares west (8) hexagon (9) $3 m$ west then 1 m north, $3 m$ south then 1 m east, $3 m$ south then 3 m west, $3 m$ north then 1m west, $5 m$ east then 3 m south. (10)			

[^0]: Copyright © ${ }_{2007}$ AWS Publications Ltd

[^1]: Sign when
 completed:

[^2]: Sign when
 completed:

[^3]: 左 The aim of this activity sheet is to be able to recognise, name, draw and describe various 2D shapes.

 ## Suggested HOME activity:

 Select one of the 2D shapes on this activity sheet. Describe the shape by it's features and ask your child to draw and name the shape.
 Example: I have four corners, all my four sides are the same length. (Answer: It could be a square or a rhombus)

 Sign when
 completed:

[^4]: Co
 The aim of this activity sheet is to understand and draw stem \& leaf graphs and time series graphs.

 ## Suggested HOME activity:

 Collect or make up data that can be presented as a stem \& leaf graph. This is normally a list of data numbers that have been collected by counting or measuring something. Create some stem \& leaf graphs. Collect or make up data that can be presented as a time series data. Time series data change over time, such a temperature, heights of plants or the weight of a pet etc. Create some time series graphs.

 Sign when
 completed:

