Written in N7 for N7

# Help Me at HOME Series



Data Projector version of ... Book 7 (AH7a)

# 40x Number Knowledge Worksheets

This resource supports the Numeracy Professional Development Project Stages 6 to 8

This resource unit has been supplied on the understanding that copies of any part of this resource will not be given or sold to teachers or students from other schools or institutions.



## **Number Knowledge Revision**

Home Page

| Information about what is covered within this resource |    |    |    |    |    |    |    |    |    |
|--------------------------------------------------------|----|----|----|----|----|----|----|----|----|
| Click on the worksheet number you require              |    |    |    |    |    |    |    |    |    |
| 1                                                      | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
| 11                                                     | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 21                                                     | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 31                                                     | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |

### **Number Knowledge Revision**



The following activities are covered in worksheets 1 to 10:

Read and write numbers while skip counting in 3's, 4's, 5's, 6's, 7's, 8's and 9's
in a forward or backward sequence.

Example: 7, 14, 21, \_\_\_, 35, \_\_\_, 49, \_\_\_\_, 63, \_\_\_, 77, 84, \_\_\_, 98, \_\_\_ etc.

 Skip counting in 3's, 4's, 5's, 6's, 7's, 8's and 9's write the number that comes after, before or between the given numbers.

Example: after 18, \_\_\_\_\_, before \_\_\_\_\_, 36 between 54, \_\_\_\_\_, 66

- ... THIRTY activities involving ...
- Ordering whole numbers or decimals, adding numbers in a matrix, exploring place
  value in whole numbers and decimals, rounding whole numbers or decimals to the
  nearest 10, 100, 1000 or 10th and finding estimated answers, finding a fraction
  of a group of shapes and of a whole number, multiplying and dividing large
  numbers and decimals, converting between commonly used fractions, decimals
  and percentages, finding a percentage of a whole number, finding the square or
  square root of a number, adding and subtracting integers and simple word
  problems.

### Number Knowledge Revision



 Using 3 digit numbers, revise the number combinations that add up to and include 18, including subtraction combinations, by using appropriate number strategies.

Example: 
$$244 + 142 =$$
\_\_\_ ,  $425 +$ \_\_ =  $387$ ,  $495 - 276 =$ \_\_\_ ,  $935 -$ \_\_ =  $493$ 

• Revise the 3x, 4x, 5x, 6x, 7x, 8x and 9x multiplication / division facts.

Example: 
$$9 \times 2 = 1$$
,  $7 \times 3 = 1$ ,  $3 \times 1 = 21$  and  $35 \div 5 = 1$ 

#### Number Knowledge Revision





The following activities are covered in worksheets 11 to 20:

#### ... SEVENTY-TWO activities involving ...

- skip counting in multiples, stating numbers that come before after or between given numbers;
- ordering whole numbers or decimals;
- writing decimals as number words;
- adding numbers in a matrix;
- exploring place value using money, whole numbers and decimals,
- rounding numbers to the nearest 10, 100, 1000, 10th or 100th and finding estimated answers;
- finding a fraction of a group of shapes, a whole number or a decimal;
- converting between improper fractions and mixed numbers;
- multiplying and dividing large numbers and decimals;
- order of operations, BEDMAS;
- converting between commonly used fractions, decimals and percentages;
- finding a percentage of a whole number;
- finding the square or square root of a number;
- adding and subtracting integers;
- simple word problems.

## Number Knowledge Revision



 Using 3 digit numbers, revise the number combinations that add up to and include 18, including subtraction combinations, by using appropriate number strategies.

Example: 
$$562 + .86 = ___$$
,  $389 + ___ = 723$ ,  $562 - 296 = ___$ ,  $915 - ___ = 373$ 

• Revise the 4x, 6x, 7x, 8x and 9x multiplication / division facts.

Example: 
$$9 \times 8 = ___, 7 \times 6 = ___, 8 \times ___ = 56$$
 and  $54 \div 9 = ___$ 

### Number Knowledge Revision





The following activities are covered in worksheets 21 to 30:

#### ... SEVENTY-TWO activities involving ...

- skip counting in multiples, stating numbers that come before after or between given numbers;
- writing decimals as number words and number words as decimals;
- writing decimals as number words;
- adding numbers in a matrix;
- exploring place value using money, whole numbers and decimals,
- rounding numbers to the nearest 10, 100, 1000, 10th or 100th and finding estimated answers;
- finding a fraction of a group of shapes, a whole number or a decimal;
- creating equivalent fractions;
- converting between improper fractions and mixed numbers;
- multiplying large numbers or decimals and multiplying by 10, 100 or 1000;
- dividing large numbers or decimals and dividing by 10, 100 or 1000;
- order of operations, BEDMAS;
- converting between commonly used fractions, decimals and percentages;
- finding a percentage of a whole number or decimal;
- finding the square or square root of a number;
- adding and subtracting integers;
- solving equations;
- simple word problems.

## Number Knowledge Revision



 Using 3 digit numbers, revise the number combinations that add up to and include 18, including subtraction combinations, by using appropriate number strategies.

Example: 
$$562 + .86 = ___$$
,  $389 + ____ = 723$ ,  $562 - 296 = ___$ ,  $915 - ___ = 373$ 

• Revise the 4x, 6x, 7x, 8x and 9x multiplication / division facts.

Example: 
$$9 \times 8 = ___, 7 \times 6 = ___, 8 \times ___ = 56$$
 and  $54 \div 9 = ___$ 

#### Number Knowledge Revision





The following activities are covered in worksheets 31 to 40:

#### • SEVENTY-TWO activities involving ...

- skip counting in multiples, stating numbers that come before after or between given numbers;
- writing decimals as number words and number words as decimals;
- writing decimals as number words;
- adding numbers in a matrix;
- exploring place value using money, whole numbers and decimals,
- rounding numbers to the nearest 10, 100, 1000, 10th or 100th and finding estimated answers;
- finding a fraction of a group of shapes, a whole number or a decimal;
- creating equivalent fractions;
- converting between improper fractions and mixed numbers;
- multiplying large numbers or decimals and multiplying by 10, 100 or 1000;
- dividing large numbers or decimals and dividing by 10, 100 or 1000;
- order of operations, BEDMAS;
- converting between commonly used fractions, decimals and percentages;
- finding a percentage of a whole number or decimal;
- finding the square or square root of a number;
- adding and subtracting integers;
- solving equations;
- simple word problems.

### **Number Knowledge Revision**



 Using 3 digit numbers, revise the number combinations that add up to and include 18, including subtraction combinations, by using appropriate number strategies.

• Revise the 4x, 6x, 7x, 8x and 9x multiplication / division facts.

Example: 
$$8 \times 5 =$$
\_\_\_\_\_,  $7 \times$ \_\_\_\_ = 56, \_\_\_\_\_  $\times 9 = 45$ ,  $24 \div 4 =$ \_\_\_\_\_,  $48 \div$ \_\_\_\_ = 6, \_\_\_\_\_  $\div 7 = 6$ 

(3)



Write in the missing numbers as you skip count in 3's.



3, \_\_\_\_\_, 18, \_\_\_\_\_,

27, \_\_\_\_\_, \_\_\_\_, 39, \_\_\_\_\_, 45, 48, 51

(2) Skip counting in 5's, write the number that comes after ...

65, \_\_\_\_\_ 40, \_\_\_\_ 105, \_\_\_\_

65, \_\_\_\_\_ 40, \_\_\_\_ 105, \_\_\_\_

from largest to smallest.

Underline the odd numbers.

Write these numbers in order



0.045

(4) **Multiplying** large numbers.

 589
 327
 450

 x 5
 x 8
 x 9

Round these numbers to the nearest 10.

 $\boldsymbol{Add}$  and  $\boldsymbol{subtract}$  these numbers.

 $\label{eq:multiplying} \mbox{ and } \mbox{dividing in 3's, 5's, 7's, 8's \& 9's. }$ 

$$(16)$$
 3 x 10 = \_\_\_\_  $(21)$  21 ÷ 3 = \_\_\_\_

(17) 4 x 5 = \_\_\_\_ (22) 40 
$$\div$$
 5 = \_\_\_\_

$$^{(19)}$$
 7 x \_\_\_\_ = 7  $^{(24)}$  35 ÷ \_\_\_ = 7

$$(20)$$
  $\times$  8 = 72  $(25)$   $\div$  8 = 10

(1) Write in the missing numbers as you skip count in 3's.



(2) Skip counting in 5's, write the number that comes after ...

(3) Write these numbers in order from largest to smallest. Underline the odd numbers.



838 2.93

27.13

0.045

(4) Multiplying large numbers.

(5) Round these numbers to the nearest 10.

Add and subtract these numbers.

(6) 
$$463 + 115 = 578$$
 (11)  $578 - 463 = 115$   
(7)  $479 + 209 = 688$  (12)  $688 - 209 = 479$   
(8)  $175 + 392 = 567$  (13)  $567 - 175 = 392$   
(9)  $249 + 464 = 713$  (14)  $713 - 464 = 249$   
(10)  $358 + 419 = 777$  (15)  $722 - 564 = 158$ 

(16) 
$$3 \times 10 = 30$$
 (21)  $21 \div 3 = 7$   
(17)  $4 \times 5 = 20$  (22)  $40 \div 5 = 8$   
(18)  $9 \times 6 = 54$  (23)  $27 \div 9 = 3$   
(19)  $7 \times 1 = 7$  (24)  $35 \div 5 = 7$   
(20)  $9 \times 8 = 72$  (25)  $80 \div 8 = 10$ 

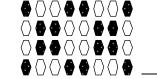


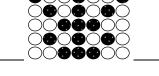
(1) Write in the missing numbers as you skip count backwards in 5's.



75, \_\_\_\_\_, 50, \_\_\_\_, 40, \_\_\_\_, 15, 10, \_\_\_\_\_

(2) **Skip counting** in **7's**, **write** the number that comes **before** ...


\_\_\_\_\_, 56 \_\_\_\_\_, 35 \_\_\_\_\_, 91


What is the **place value** of the **BOLD** digit and what does it mean?

Example: In 452 the place value is 10's and it means 50.

What fraction of each group of shapes is shaded?







(5) Add these positive and negative numbers.

| <del>-</del> 9 + 7 = |  |
|----------------------|--|
| 10 + 78 -            |  |



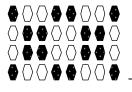
 $\label{eq:Add} \textbf{Add} \ \ \textbf{and} \ \ \textbf{subtract} \ \ \textbf{these numbers}.$ 

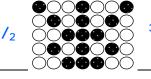
(1) Write in the missing numbers as you skip count backwards in 5's.



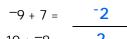
(2) **Skip counting** in **7's**, **write** the number that comes **before** ...

**49** , 56 **28** , 35 **84** , 91


What is the **place value** of the **BOLD** digit and what does it mean?


Example: In 452 the place value is 10's and it means 50.

$$532 = 10$$
's = 30  $7662 = 1000$ 's = 7000


What fraction of each group of shapes is shaded?







(5) Add these positive and negative numbers.





Add and subtract these numbers.

(6) 
$$215 + 363 = 578$$
 (11)  $478 - 136 = 342$ 

(7) 
$$219 + 715 = 934$$
 (12)  $845 - 527 = 318$ 

(8) 
$$193 + 664 = 857$$
 (13)  $725 - 270 = 455$ 

(17) 
$$10 \times 5 = 50$$
 (22)  $45 \div 5 = 9$ 

$$(20) \quad 1 \quad \chi \quad 8 = 8 \qquad (25) \quad 64 \div 8 = 8$$



Write in the missing numbers as you skip count in 7's.



7, \_\_\_\_, 28, \_\_\_\_, 56, \_\_\_\_, 70, \_\_\_\_, 91, \_\_\_\_,

Skip counting in 8's, write the number that is between  $\dots$ 

56, \_\_\_\_,72 24, \_\_\_\_, 40 88, \_\_\_\_, 104

(3) Find each fraction of these whole numbers.

$$^{1}/_{6}$$
 of 240 = \_\_\_\_\_  $^{2}/_{3}$  of 360 = \_\_\_\_\_

$$^{1}/_{7}$$
 of 350 = \_\_\_\_\_  $^{3}/_{5}$  of 500 = \_\_\_\_\_

(4) Add all the numbers in this

matrix.

| 6900 | 9   | 650  |       |
|------|-----|------|-------|
| 30   | 250 | 20   |       |
| 820  | 470 | 4100 |       |
|      |     |      | Total |

(5) **Dividing** large numbers.

Example:  $95 \div 5 = (50 \div 5) + (45 \div 5) = 10 + 9 = 19$ 

Add and subtract these numbers.

 $\label{eq:multiplying} \mbox{ and } \mbox{dividing in 3's, 5's, 7's, 8's \& 9's. }$ 

(18) 9 x 9 = \_\_\_\_ (23) 63 
$$\div$$
 9 = \_\_\_\_

$$(19)$$
 7 x = 14  $(24)$  56 ÷ = 7

$$(20)$$
  $\times$  8 = 56  $(25)$   $\div$  8 = 3

Write in the missing numbers as you skip count in 7's.



(2) Skip counting in 8's, write the number that is between ...

(3) Find each fraction of these whole numbers.

$$\frac{1}{6}$$
 of 240 = **40**  $\frac{2}{3}$  of 360 = **240**

$$\frac{1}{7}$$
 of 350 =  $\frac{50}{3}$  of 500 =  $\frac{300}{5}$ 

(4) Add all the numbers in this matrix.

| 6900 | 9   | 650  | 7559               |  |
|------|-----|------|--------------------|--|
| 30   | 250 | 20   | 300                |  |
| 820  | 470 | 4100 | 5390               |  |
| 7750 | 729 | 4770 | Total <b>13249</b> |  |
|      |     |      |                    |  |

(5) **Dividing** large numbers.

Example: 
$$95 \div 5 = (50 \div 5) + (45 \div 5) = 10 + 9 = 19$$

$$162 \div 9 = (90 \div 9) + (72 \div 9)$$

Add and subtract these numbers.

(6) 
$$684 + 302 = 986$$
 (11)  $578 - 215 = 363$ 

$$(7) \quad 419 + 358 = \frac{777}{} \quad (12) \quad 934 - 715 = \frac{219}{}$$

(18) 9 x 9 = 
$$81$$
 (23) 63 ÷ 9 =  $7$ 

$$(19) \quad 7 \quad x \quad 2 \quad = \quad 14 \qquad (24) \quad 56 \quad \div \quad 8 \quad = \quad 7$$

$$(20) \quad \frac{7}{} \quad x \quad 8 = 56 \qquad (25) \quad \frac{24}{} \div \quad 8 = 3$$



Write in the missing numbers as you skip count in 8's.



\_\_\_\_, \_\_\_, 24, \_\_\_\_, \_\_\_, 64,

72, \_\_\_\_, \_\_\_, 104, \_\_\_\_, 120

(2) **Skip counting** in **9's**, **write** the number that comes **after** ...

81, \_\_\_\_\_ 45, \_\_\_\_ 108, \_\_\_\_

(3) Round these numbers to the nearest 1000.

8545 = \_\_\_\_\_ 3499 = \_\_\_\_\_

1750 = \_\_\_\_\_ 26700 = \_\_\_\_

(4) **Shade** in part of each group of shapes to show you understand these fractions.

\_\_\_\_\_ + \_\_\_\_ = \_\_\_\_

(5) A running race is two laps.
If lap 1 is 1840m long and lap 2



is 1260m, how far is the race?

## $\label{eq:Add} \textbf{Add} \ \ \text{and} \ \ \textbf{subtract} \ \ \text{these numbers}.$

(6) 136 + 342 = \_\_\_\_\_ (11) 986 - 684 = \_\_\_\_

(7) 318 + 527 = (12) 777 - 358 =

(8) 270 + 455 = (13) 637 - 396 =

(9) + 463 = 931 (14) 633 - = 298

(10) 209 + \_\_\_\_ = 688 (15) \_\_\_\_ - 463 = 468

# $\label{eq:multiplying} \mbox{ and dividing in 3's, 5's, 7's, 8's \& 9's. }$

(18) 9 x 10 = \_\_\_\_ (23) 45 ÷ 9 = \_\_\_\_

(19)  $7 \times \underline{\hspace{1cm}} = 28 \quad (24) \quad 70 \div \underline{\hspace{1cm}} = 7$ 

(1) Write in the missing numbers as you skip count in 8's.



(2) **Skip counting** in **9's**, **write** the number that comes **after** ...

(3) Round these numbers to the nearest 1000.

Shade in part of each group of shapes to show you understand these fractions.

(5) A running race is two laps.

If lap 1 is 1840m long and lap 2 is 1260m, how far is the race?



## 1840 + 1260 = 3100m

Add and subtract these numbers.

(6) 
$$136 + 342 = 478$$
 (11)  $986 - 684 = 302$ 

(8) 
$$270 + 455 = 725$$
 (13)  $637 - 396 = 241$ 

(18) 9 x 10 = 
$$90$$
 (23) 45 ÷ 9 =  $5$ 

(19) 
$$7 \times 4 = 28$$
 (24)  $70 \div 10 = 7$ 

$$(20) \quad \mathbf{6} \quad \mathbf{x} \quad \mathbf{8} = 48 \qquad (25) \quad \mathbf{32} \quad \div \quad \mathbf{8} = 4$$



Write in the missing numbers as you skip count in **9's**.



81, \_\_\_\_\_, 135

(2) **Skip counting** in **3's**, **write** the number that comes **before** ...

\_\_\_\_\_, 18 \_\_\_\_\_, 36 \_\_\_\_\_, 60

What is the **place value** of the **BOLD** digit and what does it mean?

Example: In 4.52 the place value is <sup>1</sup>/<sub>10</sub>'s and it means <sup>5</sup>/<sub>10</sub>.

9.42 = \_\_\_\_ = \_\_\_ 6.28 = \_\_\_ = \_\_\_

1.75 = \_\_\_\_ = \_\_\_ 4.39 = \_\_\_ = \_\_\_

(4) Find the percentage of these numbers.

10% of 950 = \_\_\_\_\_ 25% of 720 = \_\_\_\_

50% of 370 = \_\_\_\_  $33\frac{1}{3}$ % of 270 = \_\_\_\_

(5) Round these numbers to the nearest 100.

292 = \_\_\_\_\_ 1318 = \_\_\_\_

764 = \_\_\_\_\_ 1850 = \_\_\_\_

Add and subtract these numbers.

(6) 482 + 312 = <u>(11)</u> 794 - 482 = <u>\_\_\_\_\_</u>

(7) 207 + 398 = \_\_\_\_ (12) 605 - 398 = \_\_\_\_

(8) 382 + 186 = \_\_\_\_ (13) 568 - 382 = \_\_\_\_

(9) \_\_\_\_\_+ 564 = 722 (14) 722 - \_\_\_\_= 158

<sup>(10)</sup> 527 + \_\_\_\_ = 845 <sup>(15)</sup> \_\_\_\_ - 335 = 298

 $\textbf{Multiplying} \ \ \text{and} \ \ \textbf{dividing} \ \ \text{in 3's, 5's, 7's, 8's \& 9's}.$ 

(17) 6 x 5 = \_\_\_\_ (22) 35  $\div$  5 = \_\_\_\_

(18) 9 x 1 = (23) 72 ÷ 9 =

(19) 7 x = 63 (24) 21 ÷ = 7

 (1) Write in the missing numbers as you skip count in 9's.



Skip counting in 3's, write the number that comes before ...

What is the **place value** of the **BOLD** digit and what does it mean?

Example: In 4.52 the place value is  $^1\!/_{10}{}'s$  and it means  $^5\!/_{10}.$ 

$$9.42 = \frac{1}{10}$$
'S =  $\frac{4}{10}$  6.28 =  $\frac{1}{100}$ 'S =  $\frac{8}{100}$ 

$$1.75 = \frac{1}{100}$$
'S =  $\frac{5}{100}$   $4.39 = \frac{1}{10}$ 'S =  $\frac{3}{10}$ 

(4) Find the percentage of these numbers.

50% of 370 = 
$$185$$
 33 $\frac{1}{3}$ % of 270 =  $90$ 

(5) Round these numbers to the nearest 100.

Add and subtract these numbers.

(6) 
$$482 + 312 = 794$$
 (11)  $794 - 482 = 312$ 

$$(7) \quad 207 + 398 = 605 \quad (12) \quad 605 - 398 = 307$$

(8) 
$$382 + 186 = \underline{568}$$
 (13)  $568 - 382 = \underline{186}$ 

(10) 527 + 318 = 845 (15) 633 - 335 = 298

(17) 6 x 5 = 
$$30$$
 (22) 35 ÷ 5 =  $7$ 

$$^{(19)}$$
 7 x  $^{9}$  = 63  $^{(24)}$  21 ÷  $^{3}$  = 7

$$(20) \quad 2 \quad x \quad 8 = 16 \qquad (25) \quad 40 \quad \div \quad 8 = 5$$

Thank you for viewing this sample version.



By purchasing a resource from my 'Help Me at Home' series, you have the choice of ....

- A Photocopy Master BOOK version,
- A Photocopy Master PDF version,
- A Data Projector version of the Number Knowledge Worksheets,
- A Data Projector version of the Curriculum Strand Worksheets.

or

The complete package at a SPECIAL PRICE!

Also available as Student Workbook versions, with personalised covers for your school.

If you want to know more, please contact
Andrew Stark on 03 338 0516